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1. Introduction and outline of results

This report pursues two goals. These are

(I) A comparison of currently used methods in computational physical

geodesy. This was the primary desire of the contractor.

(2) A feasibility study on the use of the finite element method for the

numerical solution of the fundamental problem of physical geodesy. This

was the primary desire of the author.

The fundamental problem of physical geodesy is the simultaneous

determination of the earth's figure and potential from geometric and

gravimetric measurements. The numerical solution requires a finite

parameterization of the potential and - in case of a sophisticated

approach - also of the earth's figure.

A comparison of various methods for the detailed representation of

the earth's gravity field has recently been given by Tscherning (1979).

His confirmed impression is that there is a number of competing methods

performing about equally .ell as far as the quality of results is

concerned.

In chapter 2 of the present report various methods currently used

to approach the problem of the determination of the earths figure and

potential were examined from the viewpoint of computational efficiency.

Methods like collocation, surface layer, buried masspoints, Bjerhammar's

method, lead to a fully occupied linear system of equations to be

solved. The effort to solve such a system is proportional to N3, where N

is the number of equations. Breakdown due to OSU-CPU Limes exceeding 100

hours occurs at about N = 10,000 (this corresponds to a surface layer

solution with 20 x2O blocks near the equator)

If the pattern of data and weights shows rotational symmetry,

great savings in computation time can be obtained by using techniques

. . . . t
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based on discrete Fourier transform of block circulant matrices. This

has been shown by Colombo T80). The author feels Lhat Colombo's

approach is currently the best one if an essentially nonredundant set of

surface data is employed. Such a set is for example given by I'xl ° block

averages of gravity anomalies. Although the quality of such block

averages varies greal!y between areas, the assumption of equal weights

will not cause too much harm to the estimated parameters, because there

is no problem of adjusting redundant data. The system must take what it

gets and has no choice to balance poor anomalies against better

observations. Of course, the accuracy estimates obtained from such a

procedure are very problematic.

Similar things may be said about GEOFAST developed by TASC. The

asymptotic speed is even proportional to N log N. The gain in speed is

paid for by restricting applications to data distributed regularly on a

line or within a rather small plane rectangle. Some possible trouble

spots are indicated in chapter 2. One of them is concerned with

trcnsporting a covariance from the sphere to the plane. Harmonicity gets

lost thereby. it would also be interesting to have some idea on the

proportionality factor in front of the N log N term estimating the CPU

time.

Chapters 3 to 6 document a feasibility study on the use of the

finite element method in physical geodesy. This method leads to a sparse

set of equations whose solution requires an effort proportional to NT,

where N has the same meaning as above. Unfortunately the constant of

proportionality is large. The break even point between the surface layer

and finite elements in a global solution is estimated to be around 20x20

blocks. For smaller blocks finite elements are faster, for larger ones

the surface layer is faster. The effort for a global solution based on

l7xi0 gravity anomaly data is estimated at 700 OSU CPU hours. A special

technique exploiting the remote zone effect could reduce this to about

250 hours (the surface layer method would require 15,000 hours). An

effort of 250 OSU CPU hours is considered too large. Several reruns
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would be necessary before a satisfactory choice of weights is found

A~lhough there exist computers, as for example the ILLIAC V7, on which

the CPU time could be cut by a factor of about 64, the problem apoears

too large for one individual researcher or a small research group,

Fortunately, the remote zone effect allows to compute local

solutions. The report will give an estimate for the calculation of a

detailed potential in an equatorial strip (6.5 hours) and in a

rectangular area of size 32'x640 (covering e.g. the contiguous US). In

the iatter case 30'x 3O' data were assumed. CPU Lime was estimated at 20

OSU hours. By a sophisticated use of the remote zone effect this can

probably be lowered to 6 hours. This compares favorably with a surface

layer solution requiring about 70 hours.

The finite element method does not rely on any regular pattern of

observation and weights. (Regularity could be exploited in the some way

as with the other methods. The additional saving in CPU time would,

however, not be dramatic.) In areas where the field shows much detail,

smaller elements may be chosen. Redundant data, as for example gravity

anoma!ies plus geoid heighLs, pose no problem. The method offers also

disadvantages. Harmonicity of the calculated field is only approximate.

The programming effort for an efficient computer implementation is

considerable.

The finite element method !oses much of its efficiency if the data

are not local. Local data are composed of measurements taken in a way

that one measurement involves only a single point or a small vicinity of

a point. A vicinity of a point is considered small if it contains only a

small number of the finite elements in its interior. A more precise

definition of the locality of a measurement would be that its

contribution to the normal equations must not destroy the sparsity

pattern resulting from a field representation by means of finite

elements. ata obtained by integrating over an unknown orbit are not

local. Neither are misclosures of large inertial navigation loops There

..... .. • : __ .. _---. L 2 ,T..: .. .. ' .t ','' '
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are, however, ways to ,)corporate orbits at higher altitudes in an

efficient way

The finite element method lends itself to Helmert blocking, or its

modern vcr:anL, nested dissection. Calcuiations For subregions (nations,

continents) could be deiegated. Junction equations could be combined at

a higher level, very much in the same way as this is done :n continental

network adjustment.

Chapter 6 documents a number of test calculations They were

carried out with the following gocis.

(I) To see whether the Ritz-, or the Trefftz-, or the old fashioned

east squares principe should be used (The lolter is recommended for

the specific needs of physical geodesy).

(2) To see whether the use of cubic polynom:als is sufficient, or

whether quint;c or even higher degree polynomials are needed. (Cubics

are sufficient, quintics are already hopeless from the CPU time point of

view).

(3) To see whether a certain type of element partition making a best

possible use of the 'attenuation with altitude effect" can be employed.

(The outcome was satisfactory).

(4) To find an appropriate representation of the field in the remote

outer space of the earth (Specially designed elements of infinite size

and appropriately chosen shape functions performed well in this

respect).

(5) To get an idea how the observational weights should be balanced

against the weights apcled to the equations enforcing the approximate

fulfillment of Lan!ace's equation. (Reasonable weighLs were found by

experiment. More ins~gnt wouid be desirab~e)



(6) To see whether a combination solution of surface gravity values and

satellite derived harmonics is possible. (The answer is yes, but

additional tests are necessary to identify procedures preventing a

substantial increase in CPU time).

The experiments were carried oul in 2 dimensions in order to save CPU

time. Small scale 3-dimensional calculations are desirable, but there

was no time yet to perform them.

In the authors opinion the finite element method has a place in

physical geodesy. It is very likely that a proposal by Junkins (1979)

will be accepted, suggesting to use a finite element representation of a

completely known potential for the purpose of rapid recalculation in

real time application and also otherwise. The authors feeling is that

finite elements are also useful to porameterise an unknown potential

during an estimation procedure. However, the method must be cultivated

somewhat more before a large scale effort is attempted. At the end of

the research period covered by this report, the author began to look

into a hybrid method which combines finite elements with a surface layer

of multipoles. Some preliminary statements on this envisioned method are

given in chapter 7. Another feature which makes finite elements

attractive is the possibility to attack in a head-on way the free

boundary value problems of physical geodesy. Some ideas how this could

be accomplished are found in chapter S.

j 1



2. Review of various methods

Consider an earth-centered and earth-fixed coordinate system. Choose a

convenient reference potential, e.g. that one of an equipotential

ellipsoid, or one obtained from a truncated spherical harmonics

expansion. The normal potential is assumed to completely absorb the

rotational effect. Hence the disturbing potential V is purely

gravitational. In outer space it satisfies Laplace's equation

AV= 0 (2.1)

Laplace's equation represents a local law. In order to evaluate the

second order differential operator at a certain location x, we need only

information on V in a local neighborhood of x.

The purpose of physical geodesy is the determination of the earths

surface and potentiai from geodetic measurements. There is hardly a need

to point out that the measurements are indirect, and that it is

therefore necessary to represent surface and potential in terms of a

number of unknown parameters. Because computers perform only finitely

many operations in a finite amount of time, the number of parameters

must be finite.

The choice of an appropriate set of parameters is highly

nontrivial. Factors to be taken into account are:

(*) Type of ajpplication, e.g., local improvements or global

corrections to the field.

C*) Type and distribution of measurements, in particular,

homogeneous or heterogeneous sets of data.

(*) Mathematical simplicity and elegancy. Simple setups are

easier to program. Debugging the programs is less time

consuming.
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00 Computer time during production runs.

Let us restrict attention to the potential, forgetting temporarily the

parameters describing the unknown reference surface. Let us review and

discuss representations of the potential that have been used by

geodesists. Our main emphasis will be on the lost item listed above,

i.e. computational efficiency during production runs.

2.1. Spherical harmonics.

They satisfy Laplace's equation automatically. The trace functions with

respect to the unit sphere are the surface spherical harmonics. They are

the eigenfunctions of any rotation invariant operator on the sphere.

Confer Mueller (1966), Meissl (1971a), Robertson (1978), Freeden (1979)

for extensive discussions. Spherical harmonics provide great theoretical

insight. They lead to the concept of the power spectrum of the

potential'. If a problem can be formulated in a way that rotation

symmetry is preserved, then spherical harmonics are also of great

computational advantage. In this context recent papers by

Freeden (1978), (1979) are pointed out where methods for numerical

integration of functions defined on the sphere are specified. The

formulas are related to the familiar Gaussian quadrature formulas for

intervals, i.e. they rely on a weighted average of function values at a

set of discrete points. It is likely that the formulas can be extended

to functions discretized in terms of block averages.

Spherical harmonics are widely used in satellite geodesy. At

satellite altitudes of 1000 km and above, the potential is sufficiently

attenuated to be properly represented by a spherical harmonics expansion

of moderately large degree (N = 20-30, or so).

-.. 7 7



Let us now assume that 4e are dealing with a problem invoivr g o

neterogeneous set of data, suggesEng a east squares setup by variation

of parameters. Then one Particular property of spherical harmonics

counteracts comouto aonai efficiency. This oroperty of spherical

harmon:cs is that they cre nonzero aimost everywhere No function

different from he zero function can satisfy Lapiace's equatlio and, at

the same time, vanisn in a part of he domain having nonzero measure.

Thus spherical harmonics fail to nave a local support. If the disturbing

potential is represented in terms of spherical harmonics as

N +L

V(X) Z .ciLjHLX (2.2./

and if a local measurement leads to a linear functional L(V) involving

only points in a small vicinity of x, then we nevertheless get a

representation

N +L

L(V) Z F c_ L(HLj) (2.3)
i.,O j:-L.

where most, if not all, of the coefficients ctj are nonzero. Due to the

failure of the Ht to have local support, any local measurement wil:

iniroduce an observation equation into the adjustment which has many

nonzero coefficients. The normal equations will be practically full.

Solving a symmetric .full system of m equations (without complete

inversion) requires about

6 (2.4)6

elementary steps, one step comprising one multiplication followed by one

addition. Confer equation (A.6) of Appendix A. Assuming that a computer

can perform about 500,000 such steps in a second of time, we arrive at

the following table, listing CPU times in dependence of various cho:ces

for m.

*4.



m CPU tLime

100 0.3 seconds

1000 5.6 minutes

10000 93.0 hours

100000 10.0 years

Table 2.1. CPU Limes for

solution of full m~m systems

m 10000 corresponds to about N =100 in the above expansion for V(x),

The actual Lime required to solve very big systems will be larger than

the CPU time due La data transfer between central and peripheral memory.

-It may be a coincidence that present day computers limit the

spherical harmonics expansion to about N = 10. It also appears that the

physical significance of sperical harmonics coefficients of degree

higher than M0 is questionable. A local anomaly of the field will have

a spericdl harmonics expansion with cLj tapering off to zero more

reluctantly the more pronounced the anomaly is, i.e., the less smooth it

is. Hence a local anomaly is decomposed into components being nonlocal.

Thi's may be desirable in such fields as optics or acoustics. In physical

geodesy it is undesirable.

2.2. Surface layer representation and related methods.

Under sufficiently general conditions the outer potential can be

represented by a surface layer. A surface layer can be specified in

terms of finitely many parameters in various ways, such as for example

by constant values of density in subregions composing the entire surface

of the earth. Confer Koch and Witte (1971), Morrison (1980). Any of the

surface elements generates a potential, i.e., a solution of Laplace's

L- .-.-.
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equation in outer soace. The total potential is obtainea by

superposition. In this respect, the presently discussed method does not

deviate from spherical harmonics. Also the property of a computationaily

rather undesirable nonlocal support carries over. Hence the above table

continues to give an indication of the computational effort involved, if

m is taien as the number of surface elements. indeed, global solutions

exceeding m = "20K, which corresponds to about 5 by 5 degree elements

near the equator, have not been reported in the literature (Confer,

however, subsection 2.7 below dealing with shortcuts resulting from

symmetrical configurations).

The physical significance of the surface layer is not immediate.

However they definitely offer the advantage of modelling local effects.

In areas, where the field is very detailed, or, whert a more detailed

knowledqe of the field is desired, smaller sized elements may be chosen.

Similar statements can be made about buried masspoints (confer

e.g Needham (1970) or Hardy and Goepfert (1975)) and about Bjerhammar's

method The latter represents the potential by its boundary values on a

sphere entirely contained in the interior of the earth. A finite

parameterization is achieved e.g. by partitioning the surface of the

sphere into small elements, and by assuming constant boundary va'ues in

these elements. Confer Bjerhammar (1978), Sjoeberg (1978).

The normal equation system will be full, i.e. the above table

app'ies. Local effects may be conveniently modelled by varying the

element size.

2.3. Least squares collocation.

2.3.1. Krarup's proposal.

Although least squares collocation shares some features with the methods

mentioned under 2.2, there are some important deviations. Again, the
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potential is represented as a linear superposition of special solutions

to Laplace's equaLion:

n

V(x): ZCLLKO KyL) (2.S)
L='1

The number of terms, however, now equals n, the number of measurements.

The functions

Fj(60 = L L K(W) yj (2.6)

are derived from a symmetric and positive definite kernel K(x,y) which

satisfies Laplace's equation with respect to x. (Due to symmetry, it

also satisfies Laplace's equation with respect Lo y). If the i-th

measurement IL refers to a functional

LL LL(V(XL)) (2.7)

then FL(x) as given by equation (2.6) is taken as the i-th basis

function.

The function K(x,y) is viewed as a reproducing kernel. Thus it

defines a norm IVII. The cL are chosen such that

LL (V()) - LL (2.8)

and that

IIV(x)II , 1Ln. (2.9)

Confer Krarup (1969). The textbook by Moritz (1980) may be consulted for

a detailed documentation, discussion, presentation of extensions, and

for its bibliography.

it is seen that least squares collocation uses as many basis

functions as there are observations. As compared to 2.1 and 2.2 this

number n will frequently be larger than m, the number of unknowns in the

other methods. Hence we can expect a very good fit, However, a price has

_. . z . -- :S t = 1 - I-= ] fil"
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to be paid For this The size of the linear system to be solved is n by

n The system is fuil for the very same reasons as given earlier: the

F-(x)'s satisfy Laplace's equation. Hence the compuLationai effort is

n... - (2.10)

6

The mathematical elegancy of ieast squares collocation is undisputed.

The method easily takes any type of heterogeneous data. The choice of a

suitable covariance function is not immediaLe and requires insight.

Confer Tscherning and Rapp (1974).

A computer implementation of the collocation method is described

in Tscherning (1978).

2.3.2. Least squares collocation using unknown parameters.

A somewhat unsatisfactory aspect of pure least squares collocation is

the fo::owing one. In areas of insufficient data the predicted function

tends to approach the zero function. Since the problem of physical

geoaesy resuits from a 1Inearization procedure based on the use of a

re;erence surface, the consequence is that in areas of insufficient data

the reference surface is predicted. The reference surface is, however,

mos-/ chosen according to computational convenience rather than

according to its approximation of the physical truth.

This unsatisfactory aspect can be counteracted by using a setup

including unknown parameters Confer Moritz (1980), section 16. This

setup is closely related to the concept of generalized splines which

will be discussed farther below.
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2.4. Finite elements

Finite elements have been very successful in other disciplines. There

exists an abundance of literature. As textbooks we mention

Zienkiewicz (1971), Schwarz (1980), Ciarlet (1978), SErang-Fix (1973).

Finite elements have also been used by some geodesists. Cf.

Szameitat (1979), Werner (1979). Bosman-Eckhart-Kubik were early

geodetic users of finite element concepts. They applied piecewise

polynomials to surface approximation problems. The use of finite

elements in Physical Geodesy (in the narrow sense) was up to now

restricted to the representation of a known potential for rapid

recalculation. Confer Junkins (1977), (1979), Engels (1979). We intend

to use the method also during the determination of the potential

together with the earth's surface. Our intended use will be described in

detail in the subsequent chapters. In this section we shall be very

brief.

The domain of interest is subdivided into finitely many

subregions, called elements, of preferably simple shape. If the region

is unbounded, some of the elements must be of infinite size. We shall

mostly work with box-type elements partitioning the r, , A parameter

space resulting from a choice of polar coordinates. At the boundary of

any element a number of nodes is located. Any node is shared by two or

more elements. In our case nodes will be mostly at the corners of the

boxes; but occasionally some are also encountered elsewhere on the

faces.

To any node a number of parameters is associated. Usually they

include the value of the potential there and of some of its derivatives.

An interpolation formula is prescribed which allows to calculate the

potential and its derivatives at any point in the interior or on the

boundary of an elemeni from the parameter values of all nodes associated

with this element. The interpolating function is analytic and of simple
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shape in the interior of the elements Across element boundaries

conLinuity of the function is usually required, Depending on the type of

application, continuity of some derivatives is also needed. We propose

the use of tricubic polynomials in the elements such that the resuiting

potential is globally C continuous (it is continuous together with its

first order derivatives).

If an observation of the potential refers to a location within an

element, the resulting observation equation will involve only parameters

of nodes associated with this element. As a consequence, the system of

observation equations will be sparse and so will be the normal equations

formed from them. This is a great computational advantage. The normal

equations resulting from the observation equations are not yet

sufficient. A potential represented by finite elements is not

automatically harmonic. Harmonicity must be enforced by another set of

normal equations which must be added to the earlier ones. We shall call

this the contribution of the field to the normal equations. It is

obtained by minimizing the integral over the square of the Laplacean of

the field. Harmonicity is not fully ensured this way, but only

approximately. The sparse structure of the normal equations is not

impaired by the field contribution. Sparseness is the great benefit of

the finite element method. If N is the total number of parameters in our

application of the method, the computational effort will be

const N' (2.1i)

As we shall see, the total number of parameters is appreciably larger

than the number of blocks in a comparable surface layer solution.

However it is important to stress that a synchronized refinement of the

partition in the two methods will keep the ratio of the number of blocks

to the number of parameters approximately constant. Hence our method is
3 3constF*N7 as compared to consts*N in the surface layer solution. On the
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other hand cons"L > const s . As a consequence, for a small number of

blocks the surface layer solution will be more economical. For large N,

the finite element solution is better. The break even point is estimated

to be around 2°x2' blocks.

Remark: A computational effort of O(N ) steps results if the "nested

dissection method" due to George (1973), (1977) is applied to a sparse

system of N equations resulting from decomposing a two dimensional

region of size O( )xO1N) into N elements. The system represents the

equilibrium equation for a 2-dimensional elastic problem defined over

this region. Although our region is 3-dimensional, the estimate of O(N )

steps remains valid due to the opportunity to use increasingly larger

elements as the altitude increases.

Remark: it must be emphasized that the efficiency of the finite element

method relies heavily on the locality of the measurement functionals.

Any measurement must involve only one point or a set of points confined

to a small region. Measurements involving points along an unknown

trajectory, such as for example misclosures of large inertial navigation

loops, are excluded. They would destroy the sparsity pattern and degrade

the asymptotic computational efficiency to that of least squares

collocation. Also unknown orbits of satellites pose difficulties. If the

orbits are high enough, one may, however compromize by fusing finite

elements near the earths surface with e.g. spherical harmonics at higher

altitudes. The elements are chosen small near the earths surface. They

get larger and larger with altitude in agreement with the potentials

attenuation. At satellite altitude there is only one element, or a small

number of them.

-4--.
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2.5. Sp!Ine functions

Theory and apoication of spline functions are very diversified. There

is an overlap with leas' squares collocation and a border line with

finite elements. Spline functions were invented by I. J. Schoenberg and

first described in his famous paper Schoenberg (:946). Since then they

have evolved into a very popular tool of applied mathematicians as well

as into an object of interest to theoreticians, who implanted them into

Hilbert spaces. Textbooks have been published, as for example Ahlberg

et. al. (1967), Boehmer (1974)

The practically minded person associates with splines a special

subset of them, namely polynomial splines. There is a widespread

preference for cubic splines. Polynomial splines perform well in

interpolation problems due to their simplicity, computational efficiency

smoothness and locality. As already pointed out by Schoenberg (1946),

one can construct basis functions having a local support.

The use of spline functions for problems of physical geodesy was

suggested by Davis and Kontis (1970). Meiss! (1971b) proposed their use

for the representaLion of pointwise known functions during the evalu-

ation of the explicit integral formulas of physical geodesy, i.e. the

formulas by Stakes, Vening Meinesz and their refinements due to Molo-

densky. This proposal was worked out by Suenkel (1977) and N'o6 (1980).

From the point of view of Hilbert space theory spline functions

are optimal interpolators (or approximators) of functionals. Optimality

relies on two complementary criteria, namely the minimum norm property

and the best approximation property. Both criteria are based on the

choice of a seminorm. This choice is up to the user. In contrast to

general least squares collocation, certain natural curvature-seminorms

strongly suggest themselves as candidates.

Theory and geodetic use of splines are discussed in detail in

Moritz (1978), Lelgemann (1980) and in a forthcoming paper by

Freeden (1981). Collocation with the use of parameters can be inbedded
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into the Hi beri space theory of splines as outlined in Boehmer (1974),

chapter 4.

We shall briefly stress the point of view of computationai

efficiency. If one uses general ized spl ines, as proposed by

Lelgemann (M930), Freeden (1981), one deals with functions lacking a

local support. Hence the normal equations are full This limits "he size

of the systems to a few thousand unknowns. On the other hand cubic

splines can be generalized to 2 and 3 dimensions by means of tensor

products. Here basis functions with local support are available Thus

the spline method competes with the finite element method in

computational erficiency. Therefore we shall discuss this particular

point in some detail.

Imagine, for simplicity, a rectangular region in 3-dimensiona!

space subdivided into box-type elements of equal size and shape. The set

of nodes shall be identical with the set of corners of the element. Our

intended use of the finite element method relies on interpoluting

functions called Hermite tri-cubics. In any of the various boxes, the

function to be interpolated is represented by a polynomial which is a

cubic in any one of the 3 variables, provided that the other two

variables are fixed. (Considered as a polynomial in 3 variables the

interpolating function is of degree 9). We associate with any node 8

parameters representing

a a ---- V(r,ef.A) o L,j.K 'I (2.12)

at this node. These are the derivatives of the potential of "bidegree"

less than or equal to 1. By letting all parameters having the value zero

except for one, we obtain as interpolating functions a basis function

associated with this particular node and this particular parameter. This

basis function is called shape function. This will be discussed in

detail in section 3.2. Here we only emphasize that we have 8 basis

functions per node. Any basis function is C continuous and has a local

,, _ _' i . .. ....- : .. ;- -" ± : ,. _ _ - . -- ....
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' .e a. 0 "r a :v ,, r' .r-,3 enL D cur- e a 6y nearu s of bas~s

u7ncl: ns :u i up oa" tr -cubic sp~rnes. we obac:n ony basis Function

or each noae .- s t'3 tensor product B(x,y,z) = 5(x)B(y)B(z) of

one-i Tersioar: 5-so' nes B(x) specifiea n Schoenberg (4), p. 7,
anC ca, ed c S(. eurct o B(x,y,z) is even C'

cont:nuoLs 7ns C'Kes splines attractive as compared to Hermite

Lr,-c-bics owever, it 'urns out that the support of any basis function

covers 54 aajacenlt elements

Let us summarize and conclude the comparison of finite elements

and splines by the Foilowirg 3 statements,

(1) Tricubic splines have basis functions involving less parameters than

Hermite tricubics. This may be viewed beneficial. On the other hand it

also means that we have less flexibility unless we decrease the size of

the elements

(2) Splines are smoother. This makes them more useful in interpolation

problems. However, in problems of representing a field governed by a

differential equation, we have an additional enforcer o' smoothness.

This was called the fiela contribution to the normals in section 2.4.

For this reason splines are preferred :n pure interpolation prob;ems,

whereas Hermite polynomials are preferred in the finiLe element solution

of field equations. Confer the discussion in Strang-Fix (1973), p. 61.

(3) Due to the larger support of splines, the linear system wiil be less

sparse. In an oversimplified way, we may talk of a larger bandwidth as

compared to a system resulting from the use of Hermite tricubics. It

appears that, whatever may be gained by a decreased number of parameters

and by greater smoothness in case of splines, is paid for by a larger

bandwidth slowing down the elimination procedure

[at



2.6 Aoorox!mate exolicite Green's functions

Frequently the oldest methods are the best. Hardly ever they are the

worst methods compuLationally Computers were unavailable at earlier

Limes. Take Stokes' formula It yields the geoidal undulation at one

point in terms of gravity anomalies all over the globe It is hardly

necessary to point out the approximations underlying Stokes formula as

well as the corrections which partly make good for them The usefu!ness

of Stokes formula as well as of Vening Meinesz formula and their

refinements is undoubted. Applications are, however, restricted to areas

of moderately varying topography.

Stokes' and Vening Meinesz' kernel are explicitely known Green's

functions of boundary value problems for the sohere. We are in a similar

situation as, when dealing with a large system of linear equations, an

a-priori known inverse of the coefficient matrix is available. If the

boundary value problem is discretized in agreement with a discretization

of the gravity anomalies in terms of N block averages, we obtain indeed

such a system of N linear equations in N unknowns. If the inverse is

known, calculation of the solution requires N steps for one part cular

unknown and N1 steps for all of them. This is not impressive in itself

because we know that in case of a sparse system of the type mentioned in

subsection 2.4 we can do better, namely solve for all unknowns in O(N)

steps. In case of evaluating the discretized Stokes formula, an

important additional bonus is available, namely the remote zone effect.

It implies that of the N steps necessary to evaluate one specific

unknown, many can be lumped into comparatively few new steps, and many

may even be omited altogether. The number of new steps to be carried

out is a fraction N of N, where o is viewed as a fixed constant. The

constancy of c is based on the following argument. Suppose that a

certain block design is used for the approximate evaluation of Stokes

integral. Near the point of evaluation we use averages of gravity

-77'



anoma ies over the smalIest blocks avaIlabIe, say x b;ocKs ,n-s

corresponds to N = 36'30*l0 54800 At a moderaje distance we may lump

blocks to 2°x2' and so on Very distant blocks may be omitted, in

particular in case of Vening Menesz' formula IF we quadruple N,

proceeding from I'xlu blocks to 30'x30' blocks, any of the lumped blocks

in the above design is saiit into 4 new biocKs. Hence the number of

steps aiso quadruples.

It appears thct the effort needed to calculate the geoid at one

point (block center) is N, and N 2 for N points. Hence the method is

still O(W), but the constant hidden under the "O'-symbol is very small

Finite elements are O(Nb), and consequently asymptotically better.

However, the constant hidden in 0(Nt) is large The break even point is

not exactiy known now.

If geoid or deflection of the vertical are needed only at one

point or at a very small number of points, the explicit inverse method

is the best, namely 0(N) with a very small hidden constant However it

must be stressed that the explicit inverse method relies on a special

type of homogeneously distributed and nonredundant data. There is no way

to vary the weights individually for the blocks. Additional data are

difficult to incorporate in a theoretically satisfactory way.

2.7. Exploitinq rotational or translational symmetries.

2.7 I. Invariance of normal equations under a group of transformalons.

We are not referring to a method that stands for its own as those

described thus far. We are dealing with a technique that can be applied

in conjunction with any of the methods described in subsections 2.2 to

2.6, provided that the distribution of data satisfies certain

requirements which are rather stringent.
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If the pattern of measurement-locations and -weights is invariant

with respect to the group of rotations around an axis, or with respect

to the group of translations in.l, 2, or 3 dimensions, then this

symmetry is reflected by the system of normal equations to be solved. Of

course, proper care must be taken, that the parameterization of the

potential conforms with thesymmetry. The normal equation system is

invariant with respect to one or more transformations generating the

group, provided that the unknowns are properly renumbered. Let

Gx = r (2.13)

denote the original normal equations. Let

x T Hy (2.14)

be the transformation taking into account the translation or rotation

followed by a renumbering. The transformation will be orthogonal, i.e.,

H (2.1)

The new normal equations are

HrGH y -Hr (2.16)

They are identical to the old ones. Hence
1

HTGH - G or GH -- G (2.17)

Two matrices which commute share a common system of eigenvectors. It

follows that an invariant subspace of H is also an invariant subspace of

G. Invariant subspaces of H are usually easy to identify. H reflects

only the symmetries of the problem and is independent of other

structural properties. The knowledge of invariant subspaces allows the

decomposition of the normals (2.13) into several independent systems of

smaller dimension.
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2 7 2 Outline for the case of rotational symmetry around an axis

Assume that the system is invariant with respect Lo a rotation around

one axis by an angle of

K

This case arises, if 5 degree by 5 degree mean gravity anomalies are

taken as measurements and if the field is parameterized by a surface

layer with constant density in N = 2592 blocks of size Sx50 . We then

have k = 360/5 = 72. Imagine the parameters (block densities) grouped

according to longitude. The groups are numbered according to increasing

longitude. For a certain fixed longitude, we imagine a numbering

according to decreasing latitude. Note that a rotation by /3 carries all

blocks of a certain longitude A over into blocks of longitude A+/3.

Hence a cyclic renumbering of the groups of blocks is necessary in order

to ensure invariance of the normal equations under the transformation H.

H will be of the form

[11
H = 1(2.18)LT

The size of the diagonal blocks I is implied by the number of blocks

having the sama longitude. Invariant subspaces of H, which is a

permutation matrix, are immediately specified. They are given by the k

block-columns of the following unitary matrix

7,0 ZC.. ZIX.,
7-0 1 e'-1

(2.19)

! , ~-. b A --~
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with

re2L rr--e

(2.20)I..unit matri ; L:(_

A parameter transformation

-Y: Z ? (2.21)

will decompose the normal equation system into k independent systems of

size N/k. Their solution will require an effort proportional to

kIV (2.22)

Since k = O(1b), this effort, is ON ). Of course, also the computations

required to transform the system must be taken into account. However

here one may employ fast Fourier transform techniques.

Transformations like that one outlined above have been used before

in other disciplines. They hove been used in geometrical geodesy by

Meissl (1969) in order to analyse the strength of regular triangulation

chains. Their first use in physical geodesy is due to Colombo (1980).

2.7.3. The effort of the TASC croup.

It should be mentioned that translational symmetry requires observations

covering an infinite line or an infinite plane. If the domain is

restricted to a finite rectangle, boundary effects destroy the symmetry.

Nevertheless, one is able to salvage most of the saving encountered in

the undisturbed case. The methods are more involved. They have been

widely used in picture processing. Recently an effort has been made by,
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TASC (= The Analytic Science Corportuon) o analyse geoohysical data

distributed reguiariy on an arbitrarily long line or within a small

rectangle. Confcr Heller, Tait and Thomas (!977), TaiL (9752)

The compuiationai eFFort ,n both cases is proportional o N log N

where N is the size of he 1,near system o be solved Hence N is equal

o the number of unknowns in a parameter moace or equal o the number of

measurements in a collocation model. The approach of the TASC group is

interesting. it rests on two techniques, namely (M) the

Fast-Fourier-Transform (due o Cooley and Tukey (1965)) and (2) on the

block decomposition of block circulant matrices as outlined above. In

addiiton to tkhese two ingredients, the authors employ a number of tricky

maneuvers in order to tackle the above mentioned undesirable boundary

effect. By using a transition from an NxN Toeplitz matrix to a 2Nx2N

block circulant matrix, and by employing a data window, they finally

arrive at a linear system in transformed space where a few diagonals

near the main diagonal are strongly dominant. After neglecting the

ele,ent outside this band, and after adding a small multiple of the unit

matrix to the coefficient matrix, the banded system is solved by

Cholesky.

We are unable to present the details in this report and refer the

reader to the quoted original articles. We only make the following 4

remarks.

(I) The solution is approximate, even if the method is applied to

regular data on a straight line segment or in a plane rectangle. The

errors come from two sources, namely (a) the neglection of elements

outside the band and (b) the addition of the small multiple of the unit

matrix. The procedure (b) results in deemphasizing the weights of

observations near the boundary of the region. The authors give error

estimates which are favorable. However, it is not clear whether such

favorable error estimates are available for other situations than those
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considered by the authors. They test their method in predicting gravity

anomalies from geoid heights by a collocation procedure. Thus they

deduce a high frequent output from a low frequent input. (Cf.

Meissl (1971) for a discussion of the frequency content of various

quantities related to the earths disturbing potential). It should also

be tested whether deducing a low frequent output from a high frequent

input can be done with errors of the same small magnitude.

(2) In the case of a two dimensional area, the method works strictly

speaking only for a plane region. Mapping a part of the sphere

(spheroid) onto the plane causes distance distortions, as the authors

point out. However they do not point out that these distance distortions

interact with the covariance kernel, causing it to fail to fulfill

Laplace's equation any longer. Harmonicity of the covariance function is

an inherent assumption in collocation. The authors map the systems of

meridians and parallels onto a rectangular grid in the plane. Such a

mapping has appreciable distance distortions. It is well known that

there are mappings which perform better in this respect. Perhaps one of

them should be used.

(3) Intuitive insight into the method can be gained by the following

consideration. Consider the familiar collocation problem for two random

vectors:

y = C Yx C (2.23)

We assume that x and y are related to discrete equidistant points i = 0,

1, .... , n on the line. We assume homogeneous processes, hence C, is a

symmetric Toeplitz matrix:

£c Lil C I c j .1 (2.24)
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We assume thai C. is of the form

CC C - D (2.25)

where C is positive definite Toeplitz ond D is diagonal and positive

definite. D is due to measurement noise. The main problem is the

calculat ion of

-z :(CD)- 1X (2.26)

i.e. the solution of

(C* D) X (2.27)

As TASC proposes, we extend C to a 2n x 2n Toeplitz circulant matrix C

where

CK 0 -

KK' 0 K n (2.28)

{.i2ni t1 K k Zn-I

D will also be diagonally extended toU as we show in a moment. We

extend x by zeroes

(2.29)

and thus obtain the system

(C + D ) (2.30)

This system is not equivalent to the earlier one (2.27), in the sense

that the restriction of i to the first n components is the solution of

(2.27). The reason for the failure of (2.30) is the following one. The

system (2.30) predicts y not only from the measured x L  i = 0, 1,

n-I, but also from the artificially assumed values xL = 0; i = n,

2n-I. Hence the prediction is theoretically wrong. However there is

...j.
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still the matrix D which can help us to make the prediction nearly

correct. This can be accomplished by assuming very large elements of

at the positions i = n, .... 2n-I. This amounts to the superposition of

very heavy noise on the artificially assumed measurements x, = 0, i = n,

2n-l. Hence (2.30) will lead to a nearly correct prediction.

We now apply the discrete Fourier transform toward (2 30)

Introducing the 2nx2n Fourier matrix

F K " e L' VC (2 31)

the system (2.30) goes over into

(.+)j j •(2.32)

with

- - H

(2.33)

F" is the Hermitian adjoint of F. Hence F" is also equal to F-.

is now diagonal. This is the benefit from applying Fourer

transformation to a Toeplitz circulant matrix. Cf. also the discussion

around equation (2.20)

is a Toeplitz circulant. Hence it appears doubtfull presently

what we have gained. However one can verify that the subdiagonal bands

of Z decrease as one goes away from the main diagonal. This is perhaps
intuitively clear if one remembers that the Fourier coefficients of the
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step Function

0 (2 34)

cre given by

I ) (2.35)

2;rn L

The tapering effect of the subdiagonal bands can be made more pronounced

if the transition of small elements of D in CO, n-i] to large ones in

[n, 2n-1] is smoothed out somewhat. This causes "data deemphasis" of xL

near the interval ends.

The next step is to neglect the off diagonal bands of Z up to a

small number m (m = 5 to 10, or so). This truncated banded system

version of the system (2.32) is now solved by Cholesky in O(n) steps.

The rest can be accomplished in O(n log n) steps if the Fast Fourier

technique is employed.

We leave it with this oversimplified picture of the algorithm

which could be extended to the 2-dimensional case. it is interesting to

note that the above mentioned 'data deemphasis effect" is also

encountered in the presentation of the real TASC algorithm.

(4) Shortly before finishing this report, an article by

Bitmead-Anderson (1980) came to my attention. The authors show how an

nxn Toeplitz system can be solved in O(n log n) steps by a doubling

method. The matrix is subjected to some mild restrictions, however

reference is made to other work by Brent et. al. (1980), in which an

O(n log n log n) algorithm is specified which achieves a solution

whenever it exists. It should be noted that no approximations are

involved as they are in the work of TASC. Of course, the question arises

again how large the constant hidden in the *0" symbol really is.
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2.7.4. Rauhala's array algebra.

Another way to utilize symmetries was pointed out by Rauhala. Confer

Rauhala (1980) for details and further references Also Snay (1978)

gives an introduction to Rauhala's "array algebra". It is an application

of the concept of multilinear mappings between tensor spaces. Let X, Y,

Z denote 3 vector spaces of not necessary equal dimension. Consider the

space T of tensors:

T = XGYOZ (2.36)

An element of this space is represented by a three-dimensional array

itjd,. T can be viewed as the linear span (set of linear combinations) of

vectorial tensor products xey pz with x EX, yeY, zeZ. The tensor

generated by xeyaz has elements tLjK = xLyz L. Consider three further

vector spaces X', Y', Z' of arbitrary dimensions I', J', K'. Form the

tensor product T' = X' Y' Z'. Let A, B, C be linear operators

X'z Ax
-Y' By (2.37)

Z': Cz

Define a linear map T -T' in the following way. Let the image of xe ye z

be Ax@Ay® Az. Extend the domain from the set of tensor products to all

of T by means of linearity. Thus a map Ae Be C from T -T' is obtained.

Suppose, temporarily, that any of the maps A, B, C is invertible. It is

easily proved that

(A"B C Q (2.38)

Here the benefit from array algebra becomes transparent: instead of

inverting a huge matrix of size (IJK)*(IJK), one inverts 3 matrices of
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sizes I*I, J*J, K*K.

Assume now I' > I, J' > J, K' > K and consider the leasL squares

problem

t' + V (A (9 E3 5C) t, (2.39)

with LET, 'E T', and vET' denoting the residuals. The 3 least squares

problems

y' v B y (2.40)

Z' I+v,- CZ

are solved by the pseudo-inverses

X •A+,- '

8 #. y' (2.41)

If the rank of A equals the number of its columns, then

A (ArA) iA r (2.42)

and similarly for B+, C'.

Rauhala shows that the pseudo-inverse of As Be C is given by

(A 8 C)+ = A'*80 C +(2.43)

A proof follows easi ly from geometric reasons based on 'range-space' and

"null-space" considerations. We do not give a complete proof here,

because it requires a number of formal definitions. We merely mention

the following facts:

(a) The matrix A maps its domain space one to one onto its range space.

__i

-- - - .4 !
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The orthocomplemenL of the domain space is the null-space

(b) The pseudoinverse maps the range space inversily back onto the

domain space. It maps the orthocomplement of the range space onto zero.

(c) Domain space and range space of A@38&9C are the tensor products of

domain and range spaces of A, B, C. Hence (2 43) is essentially reduced

to (2.38).

Thus the least squares problem (2.39) is solved by

t (A e B+@ C+) t' (2.44)

Let this outline be enough. We just mention that generalization to

tensor products of arbitrarily many factors are immediate. Rauhala will

also forgive that I did not use the most generalized inverses he has

ever invented.

Applications of array algebra are restricted to gridded problems

defined on regions being of the box-type. The grids must be rectangular,

however the spacing between gridlines may vary. The question still

remains how familiar problems of physical geodesy are transformed into

problems of array-algebra. Rauhala states that this cannot be done

without some "cheating a la Gordian knot". The cheating may perhaps be

comparable to that one encountered during the transformation of a

problem formulated for a small spherical rectangle into a translation

invariant problem defined over a plane rectangle.

Let us discuss the computational affort for the case of two vector

spaces X, Y of equal dimension n. The tensor product T = X@Y has

dimension N = n'. The effort to naively solve an N*N system requires

O(N3) = O(n6 ) steps. The effort to invert 2 matrices of nxn is 0(n') =

O(N{). It may be shown that a solution of the system utilizing the

.... ~i.
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decomposilLon A 9 B can also be done in O('JL) sleps. This is

asymptotica;y he same etorl as if a general sparse system resulting

trom a 2-dimensional layout is solved by the nested dissection method.

Confer the discussion in section 2.4, in particular the first of the 2

remarks given at the end of subsection 2.4.

ItI
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3 Ou:IHne of the fLnite elemenL approach.

3.1. He-r-lrp-cubic repesentaoion of the field

3.1.1 The four basis funclions for the unit interval

Let

X (, )  (X- M Y)o"(2 >e 6

and define

Too () 2 Y 3x " *1

Y 1 ( ) 'x ( 1 ) 3 2 - 2 (3 .2)

Graphs of these 4 basis functions are shown in figure 3.1

e I

Fig. 3.1 Graphs of basis functions in unit interval

Note that the first subscript in y'rj(x) refers to the location, i.e. x =

0 or x = 1. The second subscript refers to the degree of the derivative

which is equal to unity at that node.

The 4 basis functions solve the following interpolation problem:
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g i ven

f(C) . Co f(i) C10

() o C(l) (3,4)

find a cubic po;ynomial inierpoiating these values. The solution :s

(,Y Q~ )(5)L ., 0

We also introduce the derivatives

d.xk

Remark: The coefficients of

3,t, ( - c)(ije x t  (3.7)

are stored in the 4-dimensional or.ay PSC(K,I,J,L) during execution of

our computer programs described in chapter 6

3 1.2. Interval of length h

Let

YLJ(x; hh) - h j ; 0_ !5Y h (3.8)

These functions solve the above interpolation problem with data given at

x = 0 and x = I. Again we take derivatives of these : jsis functions:

dj h). .

"~T~ (3 - .9) r.'
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Obv i ous I y:

"k Lj be; h h' Yk ( ) (3,10)

3 1 3. Bicubic polynomial in a rectangle with sides a, b

Take

S r, Lyj iY ( xY. y; a,b) - , ), Y-..Lj (y; b)

0 X 6 CLo (3.11)

Note: the first Ewo indices refer to the location, the second pair

refers to the degree of derivatives!

The functions (3.11) solve the following interpolation problem:

Given

f (o,o) C f(o,b) 2CoPoo

f,(0,0) C0001  fY(o.b) C0101 (
! (3.12)

foo) • C0040•!f.Yo'o) -OI fw. b

find a bicubic polynomial

3 3
f(,,y)- - .s X")s (3.13)

rz0 st0

r:-- 7,0

1 i
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interpolat'ng these data The solution is

.Y > - C L..j. Y Y' j*L y wJ bJy

0 0- o (3.14)

0 Y b

3.1.4. Tricubic polynomials in a box with sides a, b, c

The extension to 3 dimensions is obvious: In the interpolation problem

we prescribe the nodal derivatives shown in table 3.1 at i1 e 8 corners

of a box with side-length's a, b, c

j. jyJ, 000 001 010 011 100 101 110 l1l

Deriva~tive f 1K ' f Y- fX f, y fky&

Table 3.1

Numbering of nodal derivatives in 3 dimensions

3.1.5. C continuity across element boundaries.

Consider an n = 1, 2 or 3-dimensional region divided into elements. For

n = 1 the elements are intervals, for n = 2, 3 the elements are

rectangular boxes. For n = 2, 3 we assume that a corner of an element

does not touch the interior of a face (boundary segment, boundary

rectangle) of an adjacent element. Otherwise, the elments need not be

of the same size. Take as an example the partition of a region in R

shown in figure 3.2.
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x

Figure 3.2

Sample element partition in 2 dimensions

Assume that the Hermi e nodal values are prescribed at the corners. Then

a function may be interpolated into any of the elements. It is an

n-cubic polynomial there. This function is continuous and has

continuous first derivatives everywhere. Such a function is said to

belong to the class C.

The proof is easy but not entirely obvious. Let us sketch it for

n : 2. Take any segment separating two elements, e. g. the line

segment A-B in figure 3.2. The limits of f(x,y) from the top and bottom

elements are two cubic polynomials f70o(x), fso.,rCx) in x. However such

polynomials are completely determined by the values f(A), f.CA), f(B),

f,(B) which are common to both polynomials. Hence the polynomials must

coincide. The reader may wish to extend the argument to the continuity

of fy across the segment A-B. It becomes transparent why the mixed

derivatives fry are needed at the nodes.
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3. .6. Comoound elements.

We will encounter functions which are rough in some areas and smooth in

others. In order to rep-esent them properly and economical y we like to

be able to change the size of tHe elements in a way that is more

flexible than that indicated in figure 3.2. In order to achieve this, we

must sacrifice something, namely the simplicity of the elements. It will

be sufficient to outline the procedure in RL and to consider the
"compound element" shown in figure 3.3

6 -7

h
4----1-- 5

1= 3

Figure 3.3. Sample of a compound element

The compound element shown has n = 7 nodes. At each node i four nodal

parameters are prescribed. They are fCi), fy(i), f,(i), fY(i). If a

point u is to be interpolated which is situated in the upper quad, we

just take formula (3.13) specified above. Note that also the artificial

node h may be viewed as a node of the upper quad. Its nodal values f(h),

fy(h), f,(h), f.ry(h) are interpolated linearly from these of i = 4 and

5 alone and do not depend on those of i = 6, i = 7. Having nodal

parameters in h, it poses no difficulties to interpolate points in the

lower quads. The interpolation formula for any point x in "he compound

quad may now be written as:

.C.... ( ) .(3 I)
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The index i refers now to the nodes, the index j to the nodal

derivative. The basis functions 6Lj (x,y) of the compound quad are

piecewise cubic polynomials. They are composed of cubic polynomials

having as domain Ehe 3 subquads making up the compound quad Note that

the artificic< node h does not enter the interpolation formula. Its

nodal parameters are linear functions of those at the genuine nodes, and

have thus been eliminated. Formula (3.15) holds also for simple quads,

in which case the -j (x,y) are jusL the 1j(x,Y) in a differen

notation.

C1 continuity within the compound quad is obvious. It is further

obvious that C' continuity holds within a region partitioned into simple

and compound quads in a way that any node of a quad is shared by all

neighbouring quads. Figure 3.4 gives an example of such a region.

Figure 3.4. Element partition in R

using simple and compound elements

Of course, alternative shapes of compound elements can be designed.

i4



- 40 -

Figure 3.5 shows some of them.

Figure 3.5

Other examples of compound elements

The idea is always the same: decompose the elements into subelements of

simple, i.e. rectangular shape. Make a choice of nodes which you like to

retain in the final compound element. The nodal parameters at the other

nodes must be linearly expressible in terms of the parameters of the

retained nodes by linear interpolation (not extrapolation!). After

specifying nodal parameters at the retained nodes, interpolation of any

location is done by a formula like (3.15). The basis functions a(x,y)

are obtained by specifying parameter values equal to zero except for one

parameter where a value of I is specified.

3.2. Shape functions.

For presentational purposes it is useful to introduce shape functions.

Consider a region subdivided into finite elements as for example that

one shown in figure 3.4. Label the nodes in some way by i = 1,2,... At

each node, label the nodal parameters (e.g. f, fy, f,,, fy) by i =

1,2,3,4. For each pair (i,j) consider a function SLj(x,y) which has zero

nodal values at all nodes i'i Furthermore, at node i, all nodal

parameters j'+j are also zero. Sjj(x,y) will be nonzero only in

elements adjacent to the node i. This feature is a great advantage

• -.
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because precisely the locality of the shape functions Sj (xy) is

responsible for the spasiLty of the normal equations to be derived

later. In a particular element adjacent to node 1, Sj (x,y) of course

coincides with the local functions a(x,y) introduced earlier (cf. equ.

(3.15)). Hence the shape functions SL (x,y) are nothing new. In the

later developments we will mainly deal with their fragments, the element

related j(x,y)'s. However, many interrelationships are more clearly

explained, if the globally defined functions S j(x,y) are used.

3 3. Contribution of the field to the normal equations.

In conventional least squares setups, the normal equations are formed

from observations. Observations will also contribute to the normal

equations in our case. However there will be another contribution. The

harmonicity of the field is not automatically implied by the Hermite

cubic representation. Complete harmonicity is practically incompatible

with this field representation. All that can be done is an approximate

fulfillment of Laplace's equation. This will be achieved by minimizing

the integral over the squared Laplacean of the field. This integral will

give the additional contribution to the normals as announced earlier.

3.3.1. Reasons for excluding the Ritz method.

Our least squares approach may be called an old fashioned one. At least

this is indicated in current treatises on finite elements (cf. Strang;

Fix (1973), pp. 133 to 134). In these treatises, attention is focused on

more modern principles due to Ritz and Trefftz and generalizations of

them published in the lost few decades. Confer Oden (1979). Let us

explain why we do not propose the Ritz principle. (I tried it in

numerical experiments, but it gave poor results!). The Ritz principle

.i
, a
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is successfully used in the following typical situation

Find a solution of

,A/:V in

(3.15)
V q on 8

This is the familiar Dirichiet problem. However not Dirichleticity is

the point. We could have used Neumanns boundary conditions as well, or

even a mixture of both. The decisive point is hat fixed boundary values

are prescribed. The Ritz principle replaces the above problem by a

variational one:

Find a solution of

rc o 18 . P lin . (3 .17)
B

subject to

V 9 on 85 (3,18)

The variational formula is slightly more complicated in case of Neumanns

boundary condition, but this is irrelevant presently.

The next step is to replace V in (3.17) by its finite element

representation, i. e. by

V • . -.-i (X.y) (3.19g)

Here V j are the unknown nodal parameters and Sq (x,y) are the known

shape functions. The functional (integral) to be minimized becomes a

quadratic function in the unknowns VLj. The fulfillment of the boundary

conditions V = g at 9B can not be postulated in a strict sense. One has

to be satisfied that V g at certain points of the boundary

II | II
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and perhaps also that some derivatives of V and g along the boundary

coincide at these points. The boundary conditions thus yield a linear

set of constraints for the unknowns Vi. Minimization of a quadratic

functional subject to linear side constraints is a standard problem

which leads to the familiar linear normal equations whose solution are

the V .

Consider-a sequence of partitions of B into finite elements such

that the diameter of the largest element goes to zero. It is also

required that the shape of the elements is not too badly distorted as

the diameter tends to zero. In treatises on finite elements it is proved

that under fairly general conditions the finite elment solution

converges to the exact solution of the original problem. The main

advantage of the Ritz method over the more primitive method indicate6

above and to be described in detail below, namely the method of

minimizing

jf(v) 8 (3.20)
8

subject to

V at dB (3.21)

is the following one: The Ritz method involves a functional defined in

terms of first derivatives. As a consequence, one may use shape

functions Si (x,y) which are simpler than those required for the other

method. The functional (3.20) is defined in terms of second derivatives.

It is shown in the literature, that our piecewise cubic polynomials,

which are C'continuous across element boundaries, are an admissible set

of trial functions for the least squares problem (3.20, 3.21). However

the Ritz problem can be treated successfully with trial functions which

are only piecewise bilinear and just C0 continuous across element

boundaries. Such functions require only one nodal parameter, namely the
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function value f at the node. This holds in 1, 2 or 3 dimensions. Recall

that our C" coninuous shape function require 2' nodal parameters, i.e.

2, 4 or 8 depending on the dimension d. The decrease in number of

parameters o£fers one advantage although it must be balanced against the

need to use smaller elements because of the more primitive nature of the

shape functions. in any case, the computer programs turn out to be much

simpler if bilinear shape functions are used.

But why does the Riiz method not work in our gecdetic environment?

In geodesy the boundary values are the result of measurements.

Measurements are not performed everywhere and they are subject to

observation errors. In some areas the measurements are redundant; e.g.

there may be measurements of V as well as of some components of the

gradient of V. In other areas the measurements may be sparse. There may

also be measurements in the interior of B. The constraints in our

minimization problem become weighted constraints, so to speak. A

problem of balancing Ehe weights arises. The normal equations are the

sum of two contributions, namely that one from the minimization of the

functional, and that one from the observation equations. Symbolically

(p1G1 + p2 G2 )x - r (3.22)

Suppose that the functionca! to be minimized is the Ritz-functional, i.e.

± !9 L VjCL3 (3,23)

If we choose p, large and p, small, then the gradient of V will be made

small at the cost of large residuals al Ehe observations. In the limit

p.-o, we get a constant V. If we choose p, large in comparison to p,

we treat the observation equations practically as constraints. The

minimization procedure will try to match the observations exactly. This

may lead to absurd results in case of redundant observations. Even in
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case of nonredundancy, the resulting function V may be far off from thct

one minimizing the gradient. Hence harmonicity is not ensured. Another

disadvantage is encountered in subsequent error propagation studies. If

one tries to propagate observation errors to some desired quantity, e.g.

a gradient at satellite altitude, the resulting error will reflect the

small p, rather than the large p. This is extremely undesirable,

because the propagated error is then mainly due to a "poorly observed"

gradient rather than to the observation errors. These disadvantages are

to a large extent avoided if we choose the minimizing functional as

j-,f(AV)IOLB (3.24)

From the above discussion it is clear that weights p, should be rather

large in comparison to p7. p1 weighs now the failure of V to be

harmonic, whereas in the earlier case it weighted the failure of V to be

a constant function. There is a lot of harmonic functions which deviate

considerably from a constant function.

If we minimize the functional (3.24), there will be deviations

of AV from the zero function; but these deviations will be small. Hence

the weights p, can be chosen'large in comparison to pL. Errors

propagated after adjustment will therefore mainly reflect the errors due

to the smaller weights p7 which belong to thk observations.

3.3.2. The least squares contribution of the field.

After discussing the reasons for choosing the functional (3.24) for the

purpose to ensure approximate harmonicity, we turn to the technicalities

of calculating the contribution of this functional to the normal

equations. Let us first outline the procedure on hand of the shape

functions SLj(p). As explained earlier, the index i refers to a node

while the index j refers to one of the parameters at this node. The



- 46-

argument p may now be viewea as i, 2 or 3 dimensional In case of

detailed discussions we shall mainly stress the case of 2-dimensional

poiar coordinates, where we write S~j(r, S) instead of S. (p)

The potential is represented as

V V. S.()(2)1. L* (p) (3 25d)
LI

Its Laplacean is

AV . 6S (P) (3 26)

If 2-dimensionai polar coordinates are used, the Laplacean is

-1 4 -1LV -- Vrr + t1 It .VYY(.7

In order to have something specific in mind, the reader may imagine the

region 3 in the form of a circular ring In polar coordinates, the ring

becomes a rectangular region. It may be subdivided into simole and

compound elements as shown in figure 3 .6(a) The subdivision shown there

corresponds to a subdivision of the ring which is shown in figure

3.6(b).

t I l t l 1 1 I I I l I 1

Figure 3.6.(a), Partition of a circular ring

represented in polar coordinates
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Figure 3.6.(b). Partition of a circular ring

represented in cartesian coordinates

Such a subdivision may be chosen if the field is anticipated to be more

detailed in the vicinity of the inner boundary. Substituting the

Laplacean (3.27) into the functional (3.24) gives

E :+f( ZVA Lji~)S8p (3.28)
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Minim zrng with resoect Lo Lhe Vj leads to Lhe normai equations

2-E 0 nodes (3.29)
V .. pcramete-s/node

cr

L j 1 (3.30)

i ... nodes

j ... parameLers/node

Up to a muliiplication of these equations by the weight p1, we get the

contribution of the functional (3.24) to the normal equations. Note that

for a particular equation labeled (i,j), there are only a few nonzero

coefficients, If we write the equations as

9Lj, ;V , V1 0 (3 31)

then

9q; (3.32)

unless the nodes i and i' are "neighbored". Two nodes are neighbored if

there is an element in which both nodes participate. The sparse

structure of the normal equations becomes visible now.

3.4. Detailed instructions for computer imolementation.

If one works with a computer, the above outlined procedure is not

recommended. It is preferable to decompose the total "energy' E



into contributions of the individual elements now denoted Bk.

E:X EkE Ek(3 33)

with

Ek V , r Ljt (p) dS(P) (3,34)

In agreement with the earlier notation Gj(p) for the element-internal

basis functions, this may be written as

E 'f [" jA87,aP1 dP.(p) (3,35)

The summation needs to be extended only over nodes participating in the

element. We may form the 'partial normals" due to the contribution of

element k:

. f [AGj(p)Ce 1,.(P) CLB (P)] V-'j, 0 (3.36)

or

0; IT (3.37)

If there are I nodes participating in the element, and if J is the

number of parameters per node, the above is a symmetric system of IJ

equations.

The normal equations (3.31) for the entire region are obtained by

summing all partial normal equations. The situation is similar to a

network adjustment where partial normals may be formed for subsets
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of the measurements; a subset may e.g. be given by a round of directions

Laken ao one saL ion. The partial normals are then combined to yield the

normals of the entire network.

3.4.1. The partial normals of" a simple aucd.

We return to the notation of section 3.1.2. for the basis functions in a

simple quad writing:

V (rV) , -' i(:Cr-r -).yz ,*, (-o; r '' 'o),, (3.38)
ijr 41r J r yrv 4,Jr *

The simple quad is assumed Lo exLend over the region

(3.39)

Our nolation appears complicated now. However we are trying to give

detailed instruction for an efficient computer implementation rather

than trying Lo please the casual reader wiLh some slick and polished

notation which suppresses the nasty details.

We form the Laplacean (confer (3.9) on the notation for the

derivaLives of the y's)

rL ,j rj,i ,r 4C rj J zrr J "'YtjY,

" - , .r-r.; r -r.). . ' ; , (
r, 1(.,',, "-' ; 1 .rd (3,. ,40')'. S, y,)

l~l l .... I J ..:.:- ., 1| , :,. -• . . ... .. ..I
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Let us abbreviate this for the moment as

3

AV (r. V f Z r'r'r(r)h h .y"" (341)

In order to form the normals (3.36, 3.37) we have to evaluate all

integrals

d T~k,/ r ( r)(,. (r) h' "rctr cLy
'~ ~ ~ ~ ~~ - jrJy; ir'4f'jrJ' ' ,J Zrjr TrJ/r ci(~iVt

r.r0  "' ... (3.42)

The coefficients of the partial normals

' 9 rbJ, J ; .'. ' V','J I .O (3.43)
*~~i~.'~fi LrjvJ 9 L,'. LJr J'j LrL~yJr'JT.'

are then given by

3 ..
E 1K.I -rLYgJr ' : ;r'g'jrJi, (3.44)

It is a great computational advantage that the above integrals decompose

into one-dimensional integrals

iK'2 )K, . (3.45)'

with

r
T ' " () Lrr (3.46)

r. r,

.1
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It is suff'cienL to outline the furiher procedure on hand of one of

these integrals. Let us take as an example

rr

,r • • ( r- (3.48)

r: ro

We substitute

r + (3.49)

then

I

0

By (3.10) in section 3.1.2. this further equals:

4

. /) Jr;~jr+ i Z ... -r.) (3.51)

The functions ykj,j,(?) are now derivatives of the basis functions for the

unit interval. Confer section 3.1.1., equation (3.6). They are cubic

polynomials whose coefficients are stored in the array PSC(K,I,J,L)

during the computer runs.

According to the outlined rule, we get for any of the integrals

KK

T ZrJr r'!r' (3.52)

an expression of the form

.[r< f Jr r'- c&r(01) " r r(K') *  I ( ,3
L-JrL jr ( -rQ) dr(3.53

r . .) e( 1

0*'# 4KLj(' ~d 7 KLj- 0C 0 ~( 1 r)
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analogous y

I KW 
-(- 

If k)" ,CW"

(3.S4)

0

Thereby

2 -ocJd (3 55)

The following table lists the degrees dr(k), dT(k) and the exponents

e(k)

k dr dy e

1 2 e e
2 I 0 -1

3 0 2 -2

Table 3.2

Listing dr(k), d!F(k), eCk), k=1,2,3

All these integrals are extended over weighted products of the basis

functions and their derivatives for the unit interval. These basis

functions are cubic polynomials in one variable. The first and second

derivatives are quadratic and linear polynomials respectively.

Hence all the integrals can be assembled with the help of the

PSC-table and the following integrals over weighted monomials:
,t

MS xS(r (0--)x-e xS 0 . $ 6 (356)

0
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Summarizing, we obtain the following procedure to evaluate

r "-yJ'rJyl ; Lr' Ly'Jr'Jl

for a simple elemen r. $ r _ rG ; r , S

[HI Evaluate the weighted integrals over monomials according to (3.56)

and tabulate them for g4s46, -34E t41

[27 Us:ng the PSC-Lables, whose coeffiecients are denoted c, rr(Cf.

equation (3.7)!), and the table 3.2 for d(k), e(k), evaluate integrals

over products of normalized basis functions

f 
W

1'
'3 3 R K1

2: 2:C r(k) Lrjretr(K)C&r' ~ .Lr'irJ'Pi.e eK eO

-, (3.57)

* 3 KW

2 X - C ,K) ef4'jV'e'M Ce" t .0 if

[3] According to equations (3.53), (3.54) evaluate:

Lrjr .j. ( r,) JrJr'- dr(K) - dro') +11
LrJ Lr'r" "Lrlr Lr'jr'

--. .y N- - ( () I K'c' (3.58)

L rl' " ) " "rJry ,J g,

0 6 Lrjr Lr'Jr', L jtf Lytj ,, .



and tabulate these integrals

14] Assemble
3 KK I

9 Z' eyj'rjf ;i rjr 48i--' K 3.5 )'
k Lrjr 1Jr'

Thus the partial normals for a simple element are evaluated!

Remark: There are some further computational shortcuts. Because of

symmetries, some of the

are the same. Such symmetries could be exploited, but we have refrained

from doing so in our numerical experiments.

Remark: The multi-index-notation is convenient for calculating the

coefficients 9rjiYJjZ'j;-'j'jV For subsequent calculations it is

preferable to switch to a two-dimensional array gL,. The multi-indexes L

Lyimply a node numbering n =1,2,3,4 as shown in figure 3.7 and given

by

n 2ir + iY + 1 (3.60)

r
,4

n1 n3 n 4+

Ir
nr~l n=2

n- n 2 -.iy= 0 i,

Figure 3.7. Numbering of nodes in a simple quad
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T he parameter numbering per node has been explained above repeatedly, It

is given by

q2jr +j + I (3.61)

and shown in table 3.3

q Jr "Y Math. symbol

I 0 0 V

2 0 1 V

3 0 Vr

4 I VrT

Table 3.3. Parameter numbering at a node

We adopt an accumulative parameter numbering by

i = 4(n - 1) + q (3.62)

In this way we get a two-dimensional array by:

LL' " LrL~jrJ ;  , ~ (3.63)

with

i = 8 ir  + 4 i f + 2j , + j f + (3 64I ~ j~ J J~(3.64)

i' = 8ir' + 4i + 2 jr' + j . + i

In this way we get a 16x16 matrix for the present example. There are 16

parameters involved in the simple quad, 4 at each of the 4 nodes. The

numbering groups the parameters for one node together. Table 3.4

explains oil the details once more.
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node r i? Jr J) common math ,anguage

1 0 0 0 0 V at lower left corner

2 I 0 0 0 1 V --

3 I 0 0 1 0 Vr r

4 i 0 0 I 1 V. -

5 2 0 1 0 0 V at lower right corner

6 2 0 1 I V, "

7 2 0 1 1 0 V

8 2 0 1 1 1 Vr.1
9 3 I 0 0 0 V at uppe- lefl corner

10 3 1 0 0 V -

II 3 1 0 1 0 Vr -

12 3 1 0 I 1 Vr. -'-

13 4 1 I 0 0 V at upper right corner

14 4 V -

IS 4 1 I 1 0 Vr -'

16 4 1 I 1 Vr -

Table 3.4. Numbering of nodes and

parameters in a simple quad.

This all is rather irrelevant to the casual reader. It is, however,

essential to the person implementing the method efficiently on a

computer.

Remark: The coefficients gLL' are functions of: r,, r1, It follows

that the coefficients are the same for two quads sharing these

parameters. If all simple quads in a 'layer' r.s r: r, have the same

angular width -y, then the coefficients need to be evaluated only

once!
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3.4.2. Partial norrmals of a compound element

Again it will be sufficient to consider the two-dimensional case and to

describe the procedure on hand of a spec:fic example It is the compound

element described above in section 3.1.6. and shown in figure 3.8

Ar

r,6 7

r,,

Figure 3.8. Compound quad.

We start by interpolating the parameters at the auxiliary node 8 from

those at nodes 4 and S. The function V(r,97) is given in the upper quad

4, 5, 6, 7 by

V (r ±VLj( r , ) (3.65)

It is usefuli to note that the basis functions belonging to the upper

nodes, i.e. G6j, G% vanish together with their first derivatives at the

line from 4 to 5. Hence, as long as we are only interested in zero-th

and first derivatives of V(r,T) at this line, we may use the simplified
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I epresen-!tton

V(rzf)-- X Z V.G (r- , ?-i,) ,o((r-r) 2 )
SJ, U U , (3 6)

Using a more exolicil reoresentation we may write

v(r, ) IZ
Jr Jf' O (3.67)

V (Ir.r.r~ (cfY.,j T)

The funchions ';,(x;h) are def ined n section 3.1.2., equation (3.8). loe

are now able to :nteroolate the nodal oarcmeters of the auxi! cry

node 8:

.-.,
J ~(3.68)

:or the functions 'rJx) see equations (3 9), (3.10). Switching to the

more condensed noIat or'

J 2 ' r + J I

J (3.69)

.,e Wr e t is releptonshlo as

)(3 70),



In an even more condensed form we write

, U(3.71)

where U is an 8x4 matrix.

The next step is to form according to section 3.4.1. dealing with

simple quads the partial normals for the lower left subelement. Lei

these equations be written as

G1 ILL LL L L GIU. y[G 5 1 G G VI
•G0 0 (3.72)

t.L LL I£.

LL LL ILL

i tG. , 7,fi Vg

One eliminates the auxiliary node by the substitution

v-( % G) (,)
Similar to a parameter transformation in adjustment by variation of

poramelers, we must consider the full transformation matrix implied by

V7. V
(3.74)

Fr XLv, L4 U S. ud v
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e

v A 7

and iransforrn He aove nor-)cis (3 72), now written as

GV O (3 7 )

according to

A r G AV (3 75)

7he result *s

LL LL LL LLI

i, G Gig7

L0 I f

G- -

11.717

S LL L. LL.

--- L . vs.

L ~

s seen U.a

-- L
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LL I. LI.

L .- - O=
M 0 , -zUS.

- ". L Lr_ LL T LL
344 2 G t. & 1, + 4 lU" &,, U, (378)

-U I. I L- .LL

Ur&:O, LI. u 0 U
-G9 L U S r C-nLL S

In a similar way we obtain for ihe lower right quad

GZ 2 G ,, V.

-LR - L - LR - LR

~LA -;ILA -LA -ILAt V (.9

-LK - LA LA -

By a direct application of the simple quad formulas we obtain for the

upper element

I) GI L L/

GCO G5  cS IT VZ v2 vC
0 I U LI (3.80)

G6 V G C..' 6 VC

Now the partial normals (3.77), (3.79), (3.80) of the 3 subelements are

added into the normals of the compound quads

iil I I --- . .
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GF. 01 G 21 ( G2 2.G 1Z

IC7 7 v V

C-11. G~ VG~ G

An or' th Gm~ ;e 0ii G S~ M ~ Q

LL

where a<~.S , G;; e is cssumea, fone of th odes i orj

does not partcbaKi ' ;sjad or 'J

3. More ger'er-H bcsis ~c ''

This seclior, Tiay se-ve (is ci- o ,'>re For 'Lhe const-uction) of shape

functions which) 'I) -a'o\ e a r eneral araly~ical reDresenitation t han

piecewise ~ ~~oii,(2) are C1 cont ouous, ornd- (3) are

r ompu t at ;or-a i s ezi , Y1 S -' f ; -e t

The ;7--,o~lolo~ r Kor- o hape functions may corneI

from tke d~es."'i o jse frcos Khconlform to the potentials

at-eniuation *n a be~~way. (j-':,-7-- temot ng to replace polynomials

in r b/ pcY,/r-orrials r Inr, F~i e-<'-r,:_' 'k- Thoo~s oortlicularly

attrct i-tor eeMqrITS'c- ow(!) f-)m r,( earth surface it also

Ooer's ri way to roore,;en he'iK't n Wao ori ire exter 'or Df some

sph-ere by a .- ire r-r* - 'er; ite size Th)s csPect will
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be treated furiher in the next section.

The computational efficiency of cubic polynomials comes from 2

sources. (1) Such polynomials are easily evaluated, (2) the integrals to

be evaluated in order to form the partial normals of a simple element

decompose into a moderate number of products of integrals over a single

variable. The second feature extends to Lhe basis functions to be

outlined below, the first one extends only partly.

As in section 3.1.1., one starts again with the unit interval. One

introduces functions Yrj(x) such that the j-th derivative of T.xj(x) at

the i-th-interva; end is unity, while all other derivatives at this and

the other interval end vanish. It is important to note that the highest

derivative considered this way need not be ihe same at both interval

ends. To have something specific in mind, consider the basis functions

- , )= 3 - 3 
(3

N 2- 3/o(X) !Y -K S + 1 3.3
S(x) -3x -x

In this example the second derivative is only modelled at the left end

of the interval, but not at the right end. If the above basis functions
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are changed .o

boir() . x - S + 15x-" - fox ."

(X) ;<.*+ X'4 - 6X'"o (x)) 3 ><I x - 3

I (x 62 3  
(3.84)

T (x) 6-3x 15 X - C

X 4 + -LX3
2. z

then we are dealing with Hermie quintic polynomials. At each node the

zero, first and second derivative can be prescribed.

With the chosen set of basis functions for the unit interval one

can proceed to any finite interval by (cf. section 3.1.2):

~ (3.85)

As in section 3.1.3., two dimensional basis functions ore again obtained

by forming products

iLLJ~yij~)'.~ tq /(3.86)

As indicated by the bar over the last i', there is no need to have the

same type of basis functions for x and for y. For example, one may use

quintics in x and cubics in y.

in order to ensure C' ctnLinuity, the type of basis functions used

in the x-direction should be matched by the element adocenL in the y

direction and vice versa. This poses some problems if one fuses simple

o!ements to compound e!ements However, as long as the basis functions

are polynomials, there is normaolly a way out of any dilemma. In any
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case, C~ continuity must be checked very carefully in oil unusual

situat ons.

Remark: If quintics ore used consistently, the resulting function is

even C1 continuous. This may look attractive. Among others, it offers a

way to force the Laplacean to be zero at ai nodes. However, a heavy

price has to be paid in terms of d3 parameters per node (d ... number of

dimensions). For d = 3 there are 27 parameters per node, while in case

of bicubics there are only 8.

The nodal parameters needed in these more general finite eiement

representations follow auiomatically from Lhe one-dimensional basis

functions used. Two dimensions are typical enough for our outline here.

Any node has a degree in the x and y-direc!ion. These two degrees need

not be equal, but they pose restrictions to the basis functions of

adjacent elements. Suppose the degree is 2 in the x-direciion and I in

the y-direction. This holds if quintics in x are multiplied with cubics

in y. Then the 2x3 nodal parameters are automatically given by all

symbolic products of any two elements out of the sets

(3,87)

i.e. they are:

VV v , V (3.88)

The integration procedure outlined in section 3.4.1. and the partial

normals of a simple element must be modified if other basis functions

than cubic polynomials are used. The modifications are, however,

moderate. They amount to a change of the integration formulas for the

required products of one-dimensional basis functions and their
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derivatives. The Factors of these products were denoted by

rJrrJr, L j (3 89)

Confer section 3.4.1, in parLicualar equation (3 59).

3.6. Elements extending to infinity in one direction

The case of an element extending to infinity in one direction requires

special attention. '4e shall deal with this problem in detail, because

use oT such elemens is be made in our computer experiments. Consider cn

infinite interva; < r <c. We choose basis functions

(3.90)

They tend to zero as r-' for r-* . Figure 3.9 shows the graphs of these

basis functions.

r= r

Figure 3.9. Sample basis functions for an interval

extending to infinity
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W4e combine them e.g. with cubics in So, which we denote by

S(Y Y(3.91)

Hence we deal with the basis functions

"ttL~i],j' (,. %) - ;ZM ()Tq f';?''%) (3.92)

0.x , , j y Z'J 0, 1

There is no C' conLinuity problem if an element partiLion is chosen as

shown in figure 3.10 and if bicubics are used for all elements of finite

size.

Infinite quad
with 'L.r-J' r, - 0

-- compound
quad witn
bicubics

simpte
quads with

- bicubics

Figure 3.10. Element partition making use of

infinite elements
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Next we outline the integration procedure in detail for the infinite

element. Confer the parallel developments of section 3.4.1 on the

partial normals of a simple quad. The representation of the potential

V(r, y) in a i r, y < y, is

Lr IvJ .i - J 3.3

The index i' is fixed at zero (we retain it only for ease of comparison

with section 3.4.1., equation (3.38)). All other indices run from 0 to

1. The Laplacean is:

tt
'rvJrJcr

-L'o (r)$'y . j (3.94)

This equation is abbreviated as

3 ) ( 95)

The principle

(V(r r drcL -in (3.96)

r. GI -To

leads to the partial normals of the infinite quad:

9 Lr jrj; IEvi,,jr.y, Kr'L ,ifj, 0 (3.97)
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in analogy Lo section 3A.1., the coefficients follow from the formula:

- I

9 irL' Ji ;Lr K'. I Lrjr ' ( 3.9 8)

The integrals

are unchanged. On the other hand:

p o , . . r)- re(L )r +e((') 1  r

Table 3.3 of section 3.4.?. for the dr, e is sti;l valid. If one writes

the X ,Zr',r in the form

r) C L7+ar~e(3.ioo)
) rd Cd .,J r . dr+.

then a compact 3xlx 2x2 table of the coefficients

0 4 dr 7"

CtrLrJ' e Lr 0 (3..01)o _6 j'r 1. 1 3 1

may be stored in the computer. This CHC-Tnb s the counterpart to the

PSC-Table introduced in section 3.1.1. help of the CHC-Toble

one compuLes:

LrJrL~f cJ.-o ~ L~L drW L'r
C -0 6 0( 3 .10 2 )

-1r ",-'- d-r0 cr(K)+ e0%)+ e(K'), I

r KC K'e' -
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Thereby

Pmeoe 2+ rr(X)+  -+ d dr(O9 + e'- e(K)- e(R')- 1 (3. 03)

3.7. The outer zone.

The infinite outer space of the earth can not be partitioned into

infinitely many elements of finite size. The field is most detailed in

the vicinity of the surface. Hence fairly small elements must be chosen

there. The elements may increase as we go outward. The increase in size

is partly achieved by the natural increase of the surface element rdrdy

or r coscdr dqdA in polar coordinates. To a greater extent it is

achieved by a lumping of elements as discussed in the section on

compound elements. At a certain level the finite element partition may

stop at all. The field is then represented in a spherical shell

(circular ring). It is forced to be (nearly) harmonic there by

minimizing the integral over squared Loplacean. It is now necessary to

ensure in some way that the field in the outer space of the shell is

(1) consistent with the field in the interior of the shell,

(2) approaching zero if the radius tends to zero, and finally

(3) harmonic.

Consistency means in a strict sense, that the outer field is the

analytical continuation of the field within the shell. In a finite

element context this requirement must be somewhat relaxed. Not even

within the shell do we have a strictly analytical field. However, if we

have C4 continuity there, as we do when cubic polynomials are used,

approximate C continuity across the outer boundary of the shell is a

minimum requirement.

There are various ways to deal with the problem of the outer
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field. We shall outline them now.

(1) Choose the radius of the outer shell large enough and force the

field and its first derivatives to be zero there. A large enough radius

means that the size of field and its derivatives must be below the

desired computational accuracy. It must be borne in mind that our field

is actually a disturbing field superimposed upon a reference field.

(2) Partition of the outer space into finitely many elements of infinite

size. Refer to the previous section 3.6 on elements extending to

infinity in one direction.

(3) Use of Greens formula. If potential and (outer) normal derivative

are prescribed at the boundary r, then the potential in the exterior of

r can be represented by Greens 3 "L identity. (See e.g. Heiskanen-Moritz

(1967), equation 1-29').

n ( ) (3.4L V(P) :f{v(Q) 9( n( ) e (P.lSF)

This formula refers to the 3-dimensional case, l(P,O) is the distance

between the reference point P and the point of integration 0. Confer

figure 3.11

n

Figure 3.11. Explains the definition of

outer normal n and distance I
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Consider now an element partition within a shell around the earth

surface as shown in figure 3.12.

F Po

Figure 3.12. Fusing the inner and the outer zone

The surface F of integration in equ. (3.i4) is assumed spherical

(circular) and situated slightly inside the outer boundary F,, of the

shell. Greens third identity may now be applied to any node P situated

at the outer boundary denoted r.. Since V(O) and 3v is expressedOn
linearly in terms of the parameters belonging to nodes situated in the

layer between "0 and 1"L, we get linear equations relating V(P) to nodal

parameters of the outer layer (bounded by FT and r). Let V(O) be
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represented as

LL j QJ '-.

Where L represenls the set of nodes participating in the outer layer,

and j runs over the parameters of any node. The Sij(Q) are the shape

functions introduced in section 3.2. We get

) n Sin (3.106)

and

Q 9n -jiV - n el P(Q) (3.107)

The aniounced linear equations are thus obtained:

v(P) - ZZ:C..V. (3.108)
ZeL j ij Li

In a similar manner we may even express derivatives of V at P.

Differentiation of Greens formula'poses no problem because P is not

situated at r. Therefore I(P,Q) never becomes zero. For example we may

evalu- e

a v(P)

*2 tVP Ze .V (3.109)

al V(P)
~ 9A Ij:fe ~

Representing VCP) and the 'horizontal derivatives' of V at P in this

... :_ .--,. -t-;. 
i / l i l i

.,77
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way, and doing this for all nodes of I'0, provides us with a set of

linear equations which, together with the normal equations of the

interior of the shell, will ensure a poLt'ntial which is "reasonably

harmonic' outside the earth. A disadvantage of this method, which is

proposed in McDonald-Wexler (1972) and further discussed in Zienkiewicz

et al. (1979), is the need for the evaluation of a number of integrals

which are not ali too simple. The following 3 remarks are considered

important.

Remark i: The reader may wonder why we used only V together with its

horizontal derivatives in the above compatibility equations. The answer

consists of two parts. First we have to point out that the underlying

assumption is that of a tricubic representation of the field. The

"horizontal" nodal parameters V, V9, V ,, Vv.. are, so to speak,

responsible for the variation of V along the surface Fo. Secondly, we

should stress that our finite set of equations substitutes for an

infinite set of equations (3.107) in which P varies all over r. The

variation of P and V(P) along Fo is now logically replaced by the

variation of those parameters in the cubic representation which are

responsible for the behaviour of V(P), for Pera.

Remark 2: The discussion in Remark I also demonstrates an alternative

way in which Greens third identity can be used in order to ensure

compatibility of the field across Fo. Instead of using equations (3.109)

for V9, V,%, V,,., we could just use equation (3.108) for V(P); however, we

must ' it 4 times as often as there are nodes on ro. A way to do this

would te to use (3.108) for the nodes P on Fo and also for the points

halfway between two adjacent nodes. Confer figure 3.13.
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x x x x

o x 0 x 0

x x x x x

o x 0 x 0

o .. finite element nodes on r.

x ... additional points p at which

Greens identity is evaluated

Figure 3.13. Pattern of nodes as

explained in the text

Remark 3: One could even go one step further. One could use Greens

identity for more horizontal parameters than this is implied by the

discussion in the foregoing remarks. Exact fulfillment of the identities

then con no longer be postulated. One would apply weights to the

discrepancies and add their weighted sum of squares to the other

functional to be minimized. In this way one even ends up with a positive

definite symmetric system.

(4) Combination with spherical harmonics. Imagine the potential

represented at the outer boundary ro in terms of spherical harmonics

N +

v1(P)w aZTHn7TZ Cnrm Hm(P) (3.H10)".0 nom-n

We use the symbol "H' because the "S' is already reserved for the shape

functions. We may also represent the horizontal derivatives of V in this
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way

av('P) n __ "_ H, ,(P)
Z r. n T Cn n
neo P r--n

a V(P) +_ __ n 9.H (P)

Av ) t____
n0P m*-n

9% v(P) + n N1) ~ NM(

OA G Z:1- n M dg9

n.0 P M.-n

We form these equations for any node at r,. Imagine that there are just

as many equations as there are coefficients C,,. Then, hopefully, t.he

Cnm Could be evaluated f'rom them. However, we do not propose to do this.

Instead we propose to add equations for the remaining nodal parameters,

i.e.

Z r Cnr,, Hm(P)

i tlsOmr-nv(P) . (n +-1) +") aH M,(P)
r , "? Z Cnm o

I n this way, we will ensure that the potential is reasonably harmonic

out~side of" I'. compatible wit.h the f'ield within the shell, and tending to

zero as r-n. .a

Remarks I to 3 given above under (3) apply mutais mutandis to the

present situation.
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3.8. Local data deficiencies.

It may happen that data are abundant and redundant in some areas while

in others they are sparse and deficient. Lack of sufficient data in

local areas can cause rank deficiencies or near singularities of the

normal equations. To illustrate our point, consider Dirichlel's problem

for the exterior of the unit circle:

AV(r ) 0 ; r > I

f (1f)1 (3.113)

V (1) t(o r); r-* 0

Suppose that element partition and distribution of data are as shown in

figure 3.14.

Figure 3.14. Distribution of data leading to

singularities of the normal equations.

Infinite elements are used for the outer zone. It is seen that data are

missing or def, "'mnt in 3 of the 8 intervals at the circurnference of the

unit circle. It follows that a cubic spline function s(y) approximating

• l*
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f(y) in the least squares sense is undetermined. Hence the contribution

of the measurements to the normal equations will have a rank smaller

than in the case of sufficient data. The addition of the contribution of

the field to the normal equations does not remedy the situation. The

field contribution merely serves to ensure (approximate) harmoncity in

the exterior region r > 1. If the boundary data are undetermined in

Dirichlet's problem, the whole field will be undetermined.

Remark: Only to freshmen of adjustment courses it may appear paradoxical

that a rank deficiency occurs when the number of observations exceeds

the number of unknowns. Think of a network which may be rigid and stable

in some areas and poorly determined in others.

There are at least two ways to remedy the rank deficiencies due to

lack of data in some areas. (1) The elements may be chosen larger there.

(2) A third contribution to the normals may be calculated which results

from the square of a certain curvature norm applied to the spline s(')

approximating f(y).

Approach (I) is not too strongly recommended. It may cause a loss

of regularity in the element partition. As a consequence the computer

programs could become more involved.

Approach (2) is related to least squares collocation using

splines. We take the finite element representation of V(l, ')

V1,o) 21j VLSLj (1,) (3.114)L j

The index set L comprises the nodes situated on the circumference of the

unit circle. We take the second derivative

____ cL' .T .Y zv

C 0 1r.L j Ly S0 Y
LS4
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and consider the integral

V Z (Zv P(CY ay (3.116)
0

Here p() is a weight function which con be token p(y) =I. It may also

be taken positive in areas of poor data and zero in areas of sufficienL

data. Taking the variation of (3.116) with respect to V yields, very

much in the some way as outlined in section 3.3.2., a third contribution

to the normals. Sparsity of the normals will not be impaired in any way.

The method readily generalizes to 3 dimensions. The second

derivative with respect to ' may be replaced by the surface Laplacean

thereby.

...I_ I

III.1+---- i + - I III I



- 81 -

4. Estimation of computation time

4.1. Nested dissection and Helmert blocking

Our normal equations can be grouped according to nodes. If d denotes the

dimensions, i.e. d = 1, 2 or 3 and if d-cubics are used, then for each

node there are 2d rows and 2 d columns corresponding to the 2d para-

meters per node. During any step in reordering or reducing the normal

equations the 2 d equations for one node will always be lumped together.

We may view the system as composed of 2dx2d submatrices which could be

called generalized coefficients. Elimination is then carried out using

these generalized coefficients instead of conventional scalars.

In the original normals, two nodes are coupled by nonzero

off-diagonal coefficients if there is a finite element on whose boundary

both nodes are located. Hence the system is sparse. During elimination

the coupling increases due to fill-in. If a node is eliminated all its

neighboring nodes which are not yet eliminated become coupled. The whole

idea of sparse elimination is to renumber the nodes in a way that

fill-in is effectively kept down. We shall use a technique which is a
combination of nested dissection and Helmert blocking. The philosophy

behind this procedure was discussed in great detail in Meissl (1980),

sections 3.5.4 -5. Here we shall outline it on hand of a two dimensional
problem with element partition shown in figure 4.1.

r

Figure 4.1. Element partition serving the outline of

nested dissection in conjunction with Helmert blocking

.4i
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Mind that we work in the plane polar coordinate system. Hence the region

of figure 4.1 is actually a circular ring, the left and right boundary

line, and the nodes located on them are to be identified. We first

describe the block design in a bottom up fashion. At the first stage, we

consider 8 blocks. Each one is formed out of 2 adjacent squares located

at the bottom level. Such a block looks as shown in an enlarged way in

figure 4.2. We imagine the normals formed for the two simple quads

composing the block, and the normals added. We eliminate from them the
node indicted by a circle in figure 4.2.

Fig. 4.2. First stage block

We call this the inner node of this block. The other nodes (indicated by

crosses) are called junction nodes. We obtain a partially reduced system

of 5 junction nodes.

At the second stage we enlarge the blocks of stage one by adding

two adjacent squares of the next higher layer. The block looks as shown

in figure 4.3. There are still 8 blocks.

Figure 4.3. Second stage block
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Each block again shows one inner node. However, this time there are 7

junction nodes. The normal equations for such a node are obtained by

adding the partially reduced normals of stage I and the normals for the

upper squares. After elimination of the inner node, we obtain a

partially reduced system for the 7 junction nodes.

At stage 3 we adjoin to the block of the previous stage one

compound element of the third layer. We obtain 8 blocks as shown in

figure 4.4.

iX

Figure 4.4. Third stage block

The normals are formed by adding the partially reduced normals of stage

2 and the normals for the compound upper quad. The inner node is

eliminated.

At stage 4 we join two adjacent blocks of the previous stage and

eliminate the 4 inner nodes. Confer figure 4.5. The number of blocks is

4 in this stage.
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Figure 4.5. Fourth stage block

At stage 5 we adjoin to the previous block the compound elements of the

upper layer. We obtain blocks as shown in figure 4.6. The scale of this

figure is now the some as that of figure 4.1. The number of blocks is

still 4.

Figure 4.6. Fifth stage block

At stage 6 we lump two adjacent blocks of stage S. See figure 4.7.
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Figure 4.7. Sixth stage block

At stage 7 we do a similar thing; confer figure 4.8

IX
Figure 4.8. Seventh stage block

Recall-that the modes of the two outer boundaries are actually

identical. In the final and 8-th stage we eliminate just these nodes.

See figure 4.9



- 86 -

V

Figure 4.9. Eights stage block

The Helmert blocking procedure is, as we feel, best understood, if it is

described in the above bottom up fashion. In order to analyse various

block designs, however, in particular block design for 3-dimensional

problems, we prefer a top down fashion, which we briefly outline for the

above example.

At stage 8 we slice the spherical ring by a dissecting line. Inner

nodes are those located at this line. The dissecting line is indicated

by an arrow in figure 4.9.

At stage 7 we dissect the block again (arrow in figure 4.8) and we

repeat this at stage 6. Inner nodes are still those nodes located at the

dissecting line. At stage 5 the dissecting line is horizontal (figure

4.6). Here we discover the rule which will be general enough for all our

element partitions:

Rule for identifyi.n inner nodes and iunction nodes: Inner nodes

are those nodes located at the dissecting line which have not been inner

nodes before. (In 3 dimensions we deal with dissecting surfaces rather

than lines). Junction nodes are inner nodes of the next higher stage

together with junction nodes of the next higher stage located in the

block under consideration.

The dissecting lines of the stages 1-4 are easily recognized from

figures 4.2 through 4.5 (arrows).
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4.2. Global solution.

We consider a finite element partition which allows to model the details

of the field near the surface with about the same resolution as a

conventional surface layer or collocat:on solution based on lox i block

averages of gravity anomalies.

The dimension is 3 and we use tricubics. This implies that there

are 4 parameters available at each node which are responsible for the

horizontal variat ion of V in the vicinity of this node. Hence the

element size near the surface must be chosen as 2'x 20. Mind that the

number of blocks is the same as the number of nodes. Consequently there

are 4 parameters available to model the horizontal variation of V in a

block. It follows that the averages over gravity anomalies in the four

lox 10 subblocks can be matched exactly. Our surface of computation will

be a sphere. It may be imagined as a sphere slightly below the earths

surface. The computational effort of solving the normals is unaffecied

by the use of a more complicated reference surface. Only the formation

of the normals takes longer. Asymptotically, i.e. for very large

systems, formation is negligible in comparison to solution. By assuming

a concentric sphere with an appropriately larger radius we obtain a

sphericai shell. Our element partition refers to this shell. It is

specified in figure 4.10(a),(b) and in tables 4.1 to 4.3.

zone block size Number of Number of

from to latit. fongit. blocks along blocks in

(degr. latit.) (degrees) a parallel zone

0 72 2 2 180 6480

72 84 2 6 60 360

84 90 6 18 20 60

Table 4.1 Element partition in first (bottom)

layer as well as in second layer
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Figure 4.iO(o)

Elemnent parti'lon for goba solution
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Figure 4.10(b). Element partition for global solution.

Detailed view of area near the pole

The tables apply to the northern hemisphere. The partition for the

southern hemisphere follows by symmetry. In the bottom layer there are

13800 blocks over the whole sphere. Note that the area of the sphere

divided by the area of a 20x 2' equatorial block gives about 10300.

Let us pause for a moment and reflect on the computational effort

associated with a surface layer solution based on 20x20 blocks. (Recall

that only 10xl0 blocks would be about equivalent to our finite element

treatment). We are dealing with a system of 13800 unknowns. The unknowns

ore the densities for the blocks. To solve a linear symmetric system of

iunknowns by a direct elimination method requires about
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1. (4.1)
6

elementary steps. (Confer appendix A, equation (A.6)). One elementary

step comprises a multiplication followed by an addition. We arrive at

'.38 Ell (4 2)

steps. Assuming a computer that can perform 500,000 steps per second

(OSU has such a computer at the present time), we estimate a total

effort of

243 hours CPU time (4.3)

If the blocks are chosen lax 10 the number of blocks multiplies by 4.

Hence the estimates of (4.3) multiplies by 43 = 64 giving about

15,000 hours CPU time (4.4)

We return to the finite element partition. The experience gained from

the computer experiments documented in chapter 6 and dealing with the

two dimensional Stokes problem, persuades us to assume two layers of

elements of the size shown in table 4.1. At the third layer blocks are

fused, mostly 9 into one. Table 4.2 shows the block size for the third

layer. (Cf. again figure 4.10(a),(b))

zone block size No. of blocks No. of blocks

from to lot. long. along a in zone

(degr. latit.) (degrees) parallel

0 72 6 6 60 720

72 84 6 18 20 40

84 90 6 90 4 4

Table 4.2. Element partition in third layer
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At the fourth layer the same partition is used. At the fifth layer we

fuse again, table 4.3 shows how.

zone block size No. of blocks No. of blocks

from to lot. long. along a in zone

(degr. lalit.) (degrees) parallel

0 72 18 18 20 80

72 84 12 90 4 4

84 90 6 360 1 1

Table 4.3. Element partition in fourth (upper) layer

Within the main zone -72" to +72' the basic building block is a 180 x 180

configuration. We call it a 6tN'stage block. The meaning of this name

will become clear later on. The face of such a 6,h-stage block shows a

pattern of nodes as depicted in figure 4.11. We count 46 nodes on this

face, and 8 along a side line.

In the following, we assume a blocking strategy for the formation

and solution of the normals as outlined in the previous section. The
normals result from the contribution of the field and of the

observations. Confer section 3.3. It is important that the observations

are local. Any observation must only involve points situated in one and

the same element. The contribution of the field in the outer zone is

assumed to be taken into account by finite elements of infinite size.

Confer section 3.6. The partition is that one shown for the last inner

layer in table 4.3.
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Figure 4.11. PaLLern of' node oL a IaLerol

face of a stag. 6-block
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The blocking will be hierarchical. Block boundaries will always be

composed of element boundaries. We proceed to describe the design and to

estimate the computational effort in a top down manner, starting at the

last stage.

At ihe last stage, which is stage 13, there are only inner nodes.

We assume that they are comprised of all nodes situated in the

equatorial plane. See figure 4.12(13). Figure 4.11. shows the pattern of

nodes which repeats itself 20 times along the equator. Hence the number

of nodes is

i = 20*46 - 20*8 = 760

The corresponding .fsLem of partially reduced normal equations has 8*i

equations because we have 8 parameters per node. In agreement with

equation (4.1) the computational effort in steps is

3.75 E10

translated into CPU time (assuming 500,000 steps/sec) this gives

CPU time = 20.8 hours [stage 133 (4.5)

At the next lower stage, i.e. stage 12, we have 2 blocks, the northern

and the southern hemisphere. We cut off the polar caps at latitudes ±84

degrees (cf. figure 4.12(12)). We see that for one block

i = 248

whereas

j = 760

from the previous stage. According to equation (A 5) of appendix A the

computational effort to eliminate n interior equations in the presence
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of m junction equations is

n m )(4.6)
6 2

In our case n = 248*8, m = 760*8. Hence the effort in steps is

[-! + . j( J] (4.7)

Translated into computer time, and multiplied by the number of blocks

(=2), this gives

CPU time = 55.5 hours [stage 123 (4.8)

We proceed to the next lower stage, i.e. stage It. We are still dealing

with 2 blocks. Each block is divided into two parts by the Greenwich

meridian. Keeping figure 4.t2(1) in mind we count in one block

i = 8*46 + 2*34 - 12*8 = 340

interior nodes (along the dividing meridian) and

j = 760 + 248 = 1008

junction nodes (at 00, ±840). The CPU for both blocks is estimated
at

CPU time = 135.1 hours [stage 111 (4.9)

At the next lower stage, which is stage 10, we are dealing with 4

identical blocks. Cf. figure 4.12(10). Each one comprises a quarter of

the sphere. We subdivide each block by the central meridian. For one

such block we have

i = 4*46 + 34 - 6*8 = 170

j = 10*46 + 2*(4*46 + 34) + 2*70 - 22*8 = 860
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We obtain a total CPU for this stage as

CPU time = 86.6 hours [stage 10J (4.19)

At the 9-th stage we have 8 blocks corresponding Lo the 8 octants. We

cut off the region near the pole by dissecting along the surface

= t720. See figure 4.12(g). We have

i = 5*46 - 6*8 = 182

j = 13*46 + 2*34 + 70 - !6*8 = 608

we obtain

CPU time 101.8 hours [stage 93 (4.10a)

From now on we describe the details only for the area bounded by the

latitudes t720. The portions enclosed by latitudes 72oy , 840

-7o f -840 wi II be treated summarily later on.

At stage 8 we cut fhe octant (truncated at = ±720) into 5 slices

as shown in figure 4.12(8). The meridians are eliminated in a sequence

implied by the figure. The effort results from the following table 4.4

No. i j CPU

I 144 684 93.9

2 144 456 45.9

3 144 532 60.1

4 144 456 45.9

Table 4.4. Computational effort

for the 4 phases of stage 8

Summing for this stage we obtain

CPU time = 245.8 hours Estage 83 (4.11)
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At stage 7 we have 40 blocks in the shape of slices as shown in figure

4.12(7). Each slice is split into 4 blocks. The elimination of the

dividing lines proceeds in a sequence as shown in figure 4.12(7). The

effort results from the following table 4.5

No. i j CPU

1 30 380 26.6

2 30 228 10.1
3 30 228 10.1

Table 4.5. Computational effort

for the 3 phases of stage 7

We obtain for this stage a

CPU time 46.8 hours [stage 7] (4.12)

At stage 6 we are dealing with 160 180x180 blocks. We split one block

into 2 parts by a spherical surface between the 3rd and 4th layer.

Confer figure 4.12(6). We have for one block

i=4

j = 4*46 - 4*8 = 152

The resulting CPU for all 160 blocks is

CPU time = 2.2 hours [stage 6) (4.13)

We ignore the upper blocks in the sequel. Their contribution is

marginal.

At stage 5 the number of essential-blocks is still 160. We

decompose anyone of them into 3 subblocks of size 6 degrees by 18

degrees. Cf. figure 4.12(5). There are two phases, and each of them has

i= 26
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whereas

= 4*38 - 4*5 + 2 = 134

= 2*38 + 2*27 - 4*5 = 110

The effort is

CPU time = 21.8 hours [stage 5] (4.14)

At stage 4 we have 488 blocks. (Figure 4.12(4)). Each one is subdivided

into three 6°x 60 blocks. Again there are 2 phases:

i =6

j = 2*27 * 2*16 - 4*5 = 66

j = 2*38 + 2*16 - 4*5 = 88

CPU time = 5.4 hours [stage 4] (4.15)

At stage 3 the number of blocks is 144e. (Figure 4.12(3)). We eliminate

the 4 nodes at the lower face of the upper subblock. Consequently we

have for one block:

i =4

I = 4*16 - 4*5 = 44

CPU time= 1.7 hours Cstage 3] (4.16)

The upper portion cut off in this way does not have any interior nodes

and is therefore ignored.

At stage 2 (see figure 4.12(2)) we eliminate the 4 nodes situated

below those eliminated in the previous stage:

i=4

j = 4*12 - 4*3 + 4 = 40

CPU time = 1.5 hours Estage 2] (4.17)

At the first stage the 4 inner nodes at the bottom of each of the 1440

blocks are eliminated (see figure 4.12()!)

......
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S= 4

j = 4*8 - 4*2 + 4 = 28

CPU time = 0.7 hours [stage 1] (4 :8)

We now return to the chips of the octants cut off in stage 9. They are

located between t72 and t84 degrees of latitudes. Their structure is

best seen from figure 4.10(b). Table 4.6 summarizes the elimination

stages necessary to decompose these blocks.

Stage Dissecting surface i j No. blocks CPU

8' spherical between 4 304 8 0.4

3-rd and 4-th layerI

7' A = const., 16 264 8 1.4

producing 5 slices

16 132 8 0.4

18 178 8 0.6

16 132 8 0.4

6' y= t780 6 81 40 0.2

5' as in stage 32) 4 44 80 0.1
4' as in stage 2 4 40 80 0.1
3' as in stage 1 4 28 80 0.

=3.6

1) Upper portion ignored in the sequel

2) blocks of stage S' and 3 are identical. They are

60 x6 blocks involving layers 1,2,3.

Table 4.6. Complementary stages for regions at high latitudes

Hence we obtain

_____________________________________________ --



CPU time = 3.6 hours [stages 8' to 3']

The total CPU is obtained by summing over all stages

Tolai CPU t!me = 729 hours (4.ig)

Remark: We have been somewhat wastefui by al owing many elements of

small width (6 degrees longitude) at latitudes 9- ±84 One could at the

lower layers imagine an intermediate ring of elements between 84 and 86

degrees latiudes whereby the longiLudina; width would be 18 degrees.

This would probably reduce the total CPU time to about 600 hours.

in any case it turns out that the problem is not managable on a

computer do'ng only half a million steps per second. However there are

faster computers. The ILLIAC IV is described in Avila et.al. (1978) as a

machine ihat has 64 processors, each of a speed comparable to that one

assumed above. All processors execute the same instruction at a time,

but each one operates on a separate data stream. Data can be exchanged

between processors (a subset of the processors can be disabled under

program control). Such a machine appears to be well suited to cut down

the CPU time by a factor which may approach 64. The elimination

procedure outlined above can be viewed as a procedure eliminating nodes,

whereby each node contributes 8 parameters to the system. We may thus

view our linear system as one having as many unknowns as there are

nodes, however each unknown represents acLua ly a subvector of 8

elements. From the viewpoint of eliminating nodes, an elementary

operation is thus a multiplication of two 8x8 matrices followed by an

addition. There should be a way to organize these operations such that

all 64 processors of the ILLIAC IV are busy all the time.

It appears, after all, that a global solution is feasible if one

of the worlds best computers is available. However, I consider it

doubtful that such a computational adventure will be undertaken in the

next future. Fortunately enough there is another bonus available in

physical geodesy, as well as in other disciplines, which allows us to

calculate a detailed and good solution in a local area of interest

7 . -'V



without being forced to calculate such a detai led solution everywhere.

The effect which we are going to exploit, and which has been exploited

a lot in the past, is called "the remote zone effect". It is called, by

the way, 'St. Venant's" principle in elasticity theory.

4.3. The remote zone effect.

There is not much need to elaborate on it at length. Everybody knows

that the details of the field in one area hove little correlation with

the details in remote areas. Put it in other words, if the field is

changed in an area e.g. by changing the mass distribution in this area,

the high frequent features in remote areas remain practically unchanged.

In applications of Stokes and Vening Meinesz formulas this effect is

utilized in a way, that detoi led data are only processed in a fairly

small area around the point of interest. The remote zone effect can also

be exploited in conjunction with other methods, e.g. the surface layer

method, the collocation method and, of course, the finite element

method. We shall consider two configurations. The first one is a strip

in which a detailed geoid is sought. The second one is a local region,

which for simplicity will be taken as rectangularly shaped.

4.4. Detailed solution in a strip.

Consider a partition at ground level as shown in figure 4.13(a). Assume

that this pattern extends around the globe, and that the central line

corresponds to the equator. The size of the smallest squares is assumed

to be 2'x 20. The partitioning of the space outside the surface

(assumed spherical) is demonstrated in fig. 4.13(b). The size of the

elements increases as we go away from the surface. The outer zone is

assumed to be partitioned into specially designed elements which share

two more nodes at the north- and south-pale. See also fig. 4.14.
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Figure 4.14. Elemnent partition for solution

in equatorial strip

The potential at the two nodes at north- and south-pole will be assumed

to be known. Only a very much smoothed version of the potential is

needed there, Hance these nodes will not contribute to the
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computational effort.

The idea is to get a detailed field in the vicinity of the nodes

located at a vertical plane passing through the axis of the strip.

At the final stage (stage 10), we eliminate all nodes located at

the main profiles. There are 20 such profiles, each having 60 nodes. We

obtain a system which is structured as shown in figure 4.15

Figure 415. Cyclic block banded structure of normal

equations at the last stage of the strip solution.

We are dealing with a cyclically blockbanded system. There are n = 20

diagonal blocks. The size of each block, denoted m, results from the 60

nodes at one profile, i.e. m = 60*8 = 480. The effect to triangularize

such a system amounts approximately to

.-n m3 (4.20)

steps. Under our usual assumptions the resulting CPU time is

-- m ... .... , ......... _. ~Z - , . . .. " : .. ..
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CPU Lime = 3.28 hours [stage 10] (4.21)

AL the next lower stage, which is stage 9, we are dealing with 20

blocks. We cut each into two parts by a spherical surface indicated in

figure 4.13(b) by a horizontal arrow labeled 9. We have n = 20 blocks,

each one having i = 14, j = 2*60 = 120. The resulting effort amounts to

n L *J) 3 (4.22)

steps. The

CPU time = 0.64 hours Estage 9] (4.23)

No further effort is required to deal with the upper part cut off at

stage 9. There are no interior nodes left in it.

At the next stage we cut off two portions at the outside of any

block by considering two vertical cones (surfaces of = ±12 ° and

indicated by vertical arrows labeled 8 in figure 4.13(b)). We have

n = 20 (number of blocks), i = 12, j = 2*54 = 108. We get

CPU-time = 0.44 hours [stage 8] (4.24)

From now on (stage 7) we deal with n = 20 blocks, each one having a

length of 180 and a profile as shown in figure 4.16

7--0

4 1

Figure 4.16. Vertical block-profile at stage 7.



-106-

We cut off the upper level by a spherical surface indicated by an arrow

labeled 7 in figure 4.16. We have i= 6, j=2*40 + 2*11 =102. Hence

CPU-time 0.19 hours [stage 7] (4.25)

At stage 6 we cut each of the 20 blocks into 3 parts by 2 planes

vertical to the ground level and the axis. There are two steps, each one

having i = 26. The number of junction nodes is j =79 and .j = 70

respectively.

CPU-time = 1.14 hours [stage 6) (4.26)

At stage 5 we are dealing with n = 60 blocks. We bisect by a vertical

axial plane. See the vertical arrow marked 5 in figure 4.16. We count

i= 6, j=2*35 = 70. The number of blocks is n = 60. Hence

CPU time = 0.27 hours [stage 5) (4.26a)

At stage 4 we remove the lateral portion of each of the 120 blocks. See

the arrows labeled 4 in figure 4.16. WJe find i = 6, j = 2*20 + 6 = 46

CPU time =0.25 hours Cstage 4) (4.27)

The profile of a stage 3 block looks as shown in figure 4.17. The depth

of such a block is 6 degrees of longitude. Hence the horizontal cross

section is square shaped. Ve are still dealing with 120 blocks. At each

of the subsequent 3 stages we cut by a spherical surface. See the arrows

labeled 3,2,1 in figure 4.17.

2 -

Figure 4.17. Vertical block-profile at stage 3
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AL stage 3 we have: i 4, j = 4*14 - 4*4 40

CPU-Lime = 0.12 hours [stage 3] (4.28)

AL stage 2 we have: i = 4, j = 4*12 - 4*3 = 36

CPU-time = 0.10 hours Cstage 2] (4.29)

AL stage I we have: i = 4, j = 4*8 - 4*3 = 20

CPU-time = 0.03 hours [stage 13 (4.30)

The total CPU Lime is

Total CPU-Lime = 6.46 hours (4.31)

4.5. Rectangular renion.

Consider a region of interesL covering an area of 32°x 640 (the

conterminous United States are contained in such a region). Augment this

region by adding layers of succesively larger elements to account for

the remote zone effect. The element design at ground level is seen from

figure 4.18. Note that the element size at surface level is now lox 1° .

The vertical design is based on 4 layers of elements. The lower

two layers follow the pattern of figure 4.18. At the third layer we fuse

4 blocks into one, and we do the same at the fourth layer. The basic

building block of our element design is thus a block, which we call

5-sLage block. The element partition at one of its four vertical faces

is shown in figure 4.19 (a). There are 25 nodes on a face and 7 nodes at

a vertical edge. The corresponding blocks for the augmented zones are

shown in figure 4.19 (b), (c).
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F igure 4.18. Element partition at

ground level of rectangular region

(a) (b) (C)

Figure 4.19. Element partition at vertical block

faces in solution for rectangular region.



109
- leg -

At the final stage (stage 12) we imagine a bisecting vertical plane

passing through the central meridian. See the arrow labeled 12 in figure

4.18. We count

= 8*25 - 7*7 + 2*13 - 2*5 + 2*6 - 2*3 173

Hence

CPU time = 0.25 hours [stage 12] (4.32)

At stage 11 we split along the central parallel. Accordingly

i= 8*25 - 8*7 + 1*13 - 5 + 1*6 - 3 = 155

whereas

j = 173

There a two blocks

CPU time = 2.85 hours Estage fl] (4.33)

At stage 10 we have 4 blocks. Any of them is split into two subblocks

along its central meridian:

i = 4*25 - 4*7 + 1*13 - 1*5 + 1*6 - 1*3 = 83

j = 12*25 - 11*7 + 2*8 + 2*3 = 245

CPU time 3.90 hours [stage 10] (4.34)

At stage 9 we have 8 blocks. We split by parallels. There are 2 types of

blocks. For four blocks we have

i = 4*25 - 5*7 = 65

j = 12*25 - 11*7 + 2*8 + 2*3 = 245

CPU time = 2.86 hours
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For four blocks we have

i= 4*25 - 4*7 +1*8 + 1*3 = 83

j= 8*25 - 7*7 + 2*8 + 2*3 = M7

CPU time = 2.20 hours

Summing for this stage we get

CPU time = 5.06 hours [stage 9] (4.35)

At stage 8 we split again by meridians. See table 4.7

No. of' blocks i j CPU (hours)

4 29 216 0.88

4 47 173 1.04
4 29 209 0.83

4 47 137 0.69

=3.44 hours

Table 4.7. Contribution of various

block types at stage 8

We see

CPU time = 3.44 hours [stage 8) (4.36)

In the following stages we ignore the boundary layers. Our estimation

procedure will give an upper bound on the CPU.

At stage 7 we assume 32 blocks of size 80'x 80. Splitting in~ half
means i =29, j =144

CPU time 3.32 hours [stage 7] (4.37)

At stage 6 we have 64 blocks, i =11, j = 108



CPU time = 1.29 hours [stage 6] (4.38)

At stage 5 we have 128 blocks of size 40x 40. We remove the upper layer:

i 1, j = 72

CPU time = 0.10 hours [stage 53 (4.39)

At stage 4 we have still 128 blocks. We bisect by a vertical plane: i

10, j 4*21 - 4*5 + I = 65

CPU Lime = 0.89 hours [stage 43 (4.40)

At stage 3 we bisect the 256 blocks once more: i = 3,

= 2*16 + 2*8 = 48

CPU time = 0.27 hours [stage 33 (4.41)

Now we have 512 blocks of size 20x 0We remove the upper half: i = 1,
S:4*8 = 32

CPU time = 0.08 hours [stage 2] (4.42)

At stage I we remove the two lowest nodes at the central axis of a

block: i = 2, j = 4*9-4*3 + I = 25

CPU time = 0.10 hours [stage 1] (4.43)

Summing up we obtain:

Total CPU time = 21.55 hours (4.44)

This is still quite forge. On the other hand, if one owns a computer,

such computation times are not unrealistic.

4.6. Further effort to cut down the computation time.

Examining the above models, in particular the global one and the

rectangular one, one realizes that most of the computation time is spent

Ma~j
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at the higher stages, not counting the final stage. The large

computation time is partly due to the large number of junction nodes

encountered at these critical stages.

There appears to be a possibility to further cut down on the

computational effort by more sophisticated use of the remote zone effect

(St. Venants principle). Let us outline the procedure on hand of our

last example.

Suppose that we first attempt a strip solution, but one with an

insufficient number of elements at the lateral and upper part of the

strip. To be specific, suppose that we deal with the strip along the

central parallel in figure 4.18 and that we use an element partition

shown in figure 4.20(a) (horizontal partition at ground level) and

figure 4.20(b) (vertical profile).

7..

-P,- -4 I,71

(a) (b)

Figure 4.20

Element partition for auxiliary strip solution

(a) horizontal section, (b) vertical section

At the final stage (stage 7) we deal with a symmetric block-tridiagonal

system. In contrast to figure 4.15 it is not cyclical. The effort for n

blocks of size m is -nm . In our case n = 16+1 = 17, m = 30*8. (We have

increased n by I in order to approximately account for the contribution
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of the boundary elements), Hence

CPU time = 0.15 hours [stage 7] (4.45)

At sicge 6 we cut off the upper blocks: i = 5, j 60, number of blocks
= 16

CPU time = 0.04 hours [stage 6] (4.46)

At stage S we cut into halfes by a vertical plane orthogonal to the

axis: i = 22, j = 2*27 + S = 59, number of blocks = 16

CPU time = 0.25 hours [stage 5] (4.17)

At stage 4 we remove the upper blocks: i = 5, j = 54, number of blocks =

32

CPU Lime = 0.07 hours [stage 4] (4.48)

At stade 3 we remove the lateral elements. We have i= 4, j = 2*21 + 5 -

47, number of blocks = 32

CPU time = 0.04 hours [stage 3] (4.49)

We have 32 blocks shaped as in figure 4.21

/

Figure 4.21. Block at stage 2

We cut into halfes by a vertical plane along the axis: i = 2, j = 39,

number of blocks = 32

CPU time 0.01 hours [stage 2] (4.50)

At stage I we remove the two remaining inner nodes: i = 2, j = 25,
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number of blocks = 64

CPU time = 0.01 hours [stage I] (4.51)

Hence

Total CPU-time = 0.57 hours (4.52)

It is seen that such a profile can be calculated in about 0.5 hours.

Profiles in meridional directon require about 0.25 hours.

Figure 4.22. Partition of rectangular region after

auxiliary profile solutions hove been calculated

We calculate 3 long and 7 small profiles as shown in figure 4.22. The

CPU time = 3.72 hours

The potential and its nodal derivatives are not thought to be known

precisely at the axial plane after a profile calculation. However the
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high frequent portion is thought to be known with good accuracy. This

means that in the further treatment of the rectangular region we may go

along with a smaller number of junction nodes at the vertical planes

along profiles. The number of junction nodes along a profile follows

from figure 4.19 (b). Considering this reduced number, the computation

time for the various stages of section 4.5 is now reduced as shown in

table 4.8.

Stage i j No. CPU

12 (final) 91 1 0.04

I1 75 91 2 0.36

t0 43 123 4 0.51

9 27 123 4 0.29

43 91 4 0.31

8 I1 96 4 0.06

27 91 4 0.17

11 107 4 0.08

27 75 4 0.12

7 29 64 32 0.82

6 11 66 64 0.51

5 (estimated from earlier values) < 0 10

4 10 50 128 0.55

3 (estimated from earlier values) < 0.27

2 < 0.08

I < 0.10

< 4.37

Table 4.8. Reduced computational effort for the solution in a

rectangular region after the calculation of auxiliary profiles



We obtain a

Total CPU time =8.09 hours

Facit: there is always a way to improve on~ a previous estimation. We

feel that also the 700 hours for the global model could be cut by the

above procedure to a fraction of 1/3 or better.
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S. A proposal for a numerical solution of the free boundary

value oroblem

5.I. Isoparametric elements.

Isoparametric elements are well known in finite element analysis. Confer

e.g. Strang-Fix (1973), section 3.3. We outline the basic idea on hand

of a two dimensional example. Consider the r, T plane and consider an

element partition as shown in figure 5.1(a). Denote by SV(r,cp) the shape

funclons, where i refers to the node and j to a specific parameter at

this node (Cf. section 3.2). We assume C continuity of the SI(r,y).

(a) (b)

Figure 5.1

Mapping from straight to curved elements.

Consider now a mapping from the r, y plane of figure S.A(a) into the

R, ' plane of figure 5.1(b). The mapping functions are

R~ R (r, ()
(R.,)*((S.I)
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The elements get distorted thereby. The distortions shall be locally

smooth. The mapping functions shall be C' continuous. In fact, we

represent them in terms of finitely many porameters by using exactly the

shape functions S(r, )'

R: = _R S (r.)
! (5.2)

LjU

It is now the R,4 plane of figure 5.l(b) where our problem in terms of a

differential equation of the field and in terms of observations on this

field is posed. The r,y plane of figure 5.1(a) serves only an auxiliary

purpose during the calculations.

There is Laplace's equation for the field:

AV(R,O) -;• ' R OR + R- "910.t

And there are point measurements involving V(R, ) and its derivatives.

In order to have something specific in mind, assume that the image

of the unit circle r = 1 in the r, T plane is the (finite element

approximation of the) level surface of the reference potential in the

R,O plane. Assume that point gravity anomalies are prescribed at certain

locations k = 1,2-.... K which are the images of r = I, F = y,. Let i;

= V be the normal to the level surface in the R,4 plane. Then the

following equations hold (V ... disturbing potential, ... normal

gravity):

A9 V
A k R R (1

0, N , )(.4
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Our next problem is to represent the potential in the Rj plane in terms

of finitely many parameters. Here, a deliberate detour is taken. One

starts representing the image of V in the r,' plane in terms of the

shape functions:

iLj 9 tjL

The representation of V(R, ) is then obtained by means of the inverse

functions

r r t-(.() ,R-'(R,(D)

R. ) • (R. ) (56)

Fortunately enough, the inverse functions will never be used expl icitely

during the numerical calculations. We obtain

V (R, 0) V . - S' £ ( r (R.'(), .(P)) (57)

LjU i

Remark: The fact that the same share functions S are used in order to

represent the transformation and the potential is responsible for the

name "isoparametric elements".

We now outline the calculation of the field contribution to the

normals. Inserting the above representation of V(RO) into the Laplacean

(5,3), we obtain

V (R'0) V(5.8)~LJ

The following manipulations serve to circumvent the explicit use of

r(R,), 9(R,0) during the subsequent calculations. Let us take the term

-S.9



as an example. It holds that

a'sz ?- ~r (S.5 10)

+ )Sci. ally~

ol (9 -1 R

The functions

r o r  (SLI

dont require any further treatment because the Sjj are simple

expressions in r, S, e.g. bicubic polynomials which ore differentiated

as shown in section 3.1. Of course, after differentiation the

substitution r = r(R,O),y = So(R,¢) has to be imagined but this

substitution will readily be undone during a subsequent change of

variables in the integrals. Only thf derivatives of r, S with respect to

R cause trouble. One forms the Jacabian matrix of partials

__ a __

d r(r, ) (5. 2)

i,_.-_ I
: • ,c u~m ...... nrn
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One inverts this matrix:

obtaining in this way the first order partials

0 ;"" "(5.14)

whereby the substitution r = r(R,C), y= S(R,P) must be imagined, but is

not done explicitely. Denote 1emporariiy

9 R e(r.,) ar

Then

'r gc)e(r T) 9r ) e(r, ,) sp

(5. 16)
ole (r,}er @~~, no
__r_ 3(r 9')
Or

similarly:

~- r-"
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Hence the second derivatives needed in

OR (5. 18)

are calculated In an analogous fashion all quantities needed in

evaluating V(R, ) can be obtained. One arrives at the following general

expression

•~~V LS.. C r( R,), y(A,O))
,jj Li

(5.19g)

,j

where the substitution r = r(R,c),9= P(R,0) is not actually carried

out.

We proceed to the integration over the curved element in the

R,. plane:

E .4fo(~P) LR ctP

(5.2S)

Taking the variation witi respect to the Vuj, one gets (as in section

3.2.2.) the contribution from this quad to the normals as

j 9 .,v..., "j; 0 (5.21)

with

9i; Lj ' " f Q (r(R. ), .)Q,.,(r(.R,),Y(R, R,::RoL (5.22)
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Now comes the announced transformation of parameters of the r,y plane.

The domain is mapped onto the uncurved rectangle in the r, T plane.

Det[J(r,q;)] is the Jacobian determinant of this transformation.

J4J;LJ r Q ( (r) R(r )'Dot3( q)Jdroy (5,23)

Remark: Although the functions 0 (r,T), R(rg) readily split into sums

of products of terms F(r)G(9), the Jacobian DeLEJ(r,F)] does not. Hence

the integration procedure is not easily carried out. Numerical

integration may be necessary.

Let us also elaborate on the contribution of the measurements, in our

special case, the gravity anomalies. First we need a representation of

the vector v'-, i.e. the normal to the level surface

R, R (1,Cy)
(5.24)

We may view this as a oarameter representation of the surface. In the

orthonormal system

ea• , e e (5.25)
R 9R,

the vector tangent to the level surface (curve) has the representation

2a

1(5.26)
L OT

I
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Hence the orthogonal vector has the representation

aR (5.27)

L ac

Making this a unit vector

LR RpV (5.28)6T) *

Hence

av ' r"R , -1 - (5.29)

Again

a_v = V cv r _ _
&R 9- . c~ qT

v c9v oR r c9_.V R. (5.30)
9V 6aV ar _) _9

where the formulas (5.13) are employed once more.

Discussion: Remember that we are presently dealing with a completely

known isoporametric transformation. The parameters R, ji ore

prespecified. What is the benefit from such a transformation and what is

the price to be paid?
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An isoporametric transformation opens the way to exotically shaped

reference surfaces. The resulting normal equations ore still as soarse

as those for the spherical (or ellipsoidal) reference surface Hence the

solution of the normals require no additional effort. A price has to be

paid when the normals are formed. The integration procedure is more

costly with respect to programming effort and computation time. On the

other hand, the solution of the normals is asymptotically more time

consuming than the formation. If N is the No. of elements at ground

level, then the formation of normals is an effort of cN where on the

solution is an effort c5 N. Here cF and c, are (nearly) constants.

Recall, by the way, that a solution by means of surface layer elements

or collocation requires cN'! It is seen that isoparametric elements

affect the constant factor c, but not cs .

5.2. Approaching the free boundary value problem of physical geodesy

Isoparametric elements as outlined in the previous section open a door

to approach the fundamental problem of physical geodesy in a more direct

way than this has been done thus far. Our subsequent presentation will

be expository. Detailed formulas will be given elsewhere.

The fundamental problem of physical geodesy is the simultaneous

determination of the earths figure and potential from measurements of

the 3-dimensional gravity vector at the earths surface. The historical

approach to this problem seemingly has been done under the motto: 'First

linearize everything in sight and then think about formulating a

meaningful problem". As already proposed in Meissl (1971) we prefer to

formulate a problem and then to linearize it. However, we assume that

the unknown surface of the earth is smooth. This means that the terrain

has been smoothed and that the gravity measurements have been corrected

accordingly.
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Assume that a sphere of radius r. situated in r, y, A space is the

pre-image of the earths surface under a certain unknown transformation

R - (-

A. A( weA)

Assume that the measurements g, g, ... of the 3 dimensional gravity

vector are taken at locations identified by their coordinates r, =

ro , cp , A, in r, y , A space. The vectors g,, themselves are considered to

be represented in a rectangular equatorial system. Assume further, that

the earths rotation is known so that the rotational part of the

potential can be taken into account by a known reference potential U,

while the unknown disturbing potential V can be assumed harmonic.

The transformation from r, 9, A space to R, , A space is now set

up according to equations (5.2) in the previous section as

Ot~Z jr £.l, R) (5.32)

A A 4iA) r

The R, Aj are assumed known for all nodes i except those situated

at the earths surface. We define the index set L in a way that ieL

identifies precisely these nodes. Thus Ri, kq, Aq are assumed unknown
for ie L. The remaining coefficients Rq, 4 , AJ, i L are known and can

be chosen according to computational convenience. For example they can

establish a transition from spherical surfaces r = const to ellipsoidal

surfaces in the R, 0, A space.
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Next the contribution of the field to the normal equations is

considered. One forms the energy integral

E A f V(0,,A)]R cos0cLRcLc-A (5.33)

It is now extended over the entire exterior space in R, t, A space

Unknown quantities in this integral are not only the nodal values Vg but

also Ri, q., A., ie L. Hence variation of E must be performed with

respect to all these quantities. Thereby the usual decomposition of the

domain into the individual elements is employed, and a transformation of

the element integrals back to r, ?, , space can be done just as outlined

in the previous section. The resulting normal equations are linear with

respect to VLj but nonlinear with respect to R j, ij, Azj, i L. They are

of the following form

The equations are still sparse if considered as linear equations in VL.

However sparseness also extends to the nonlinear equations in the

following sense. Any nonzero coefficient gj;L , is related to one or more

elements coupling the nodes i and i'. Hence g j; , will only involve such

transformation parameters R, ,P, A,,, keL which belong to these common

elements. In other words, if the nonlinear normal equations are

linearized, then the resulting equations will have the same sparsity

pattern as the equations of the earlier chapters. The only difference is

that all nodes ieL will have additional parameters R zp.tj, Aj.

The contribution to the normals from the assumed gravity

measurements does not pose much difficulty. The observation equations
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cre ot the following type

a)y I 1K'9K

U is the reference potential, V the disturbing potential. The equations

are again linecr in V , but non inear in Rj, k, / ;ie L The reference

potential U also gives a contribution due to the unknown location of the

measurements, i.e. due to the unknowns R , , .i e L. The residuals

r), ,r ,', r, ' are weighted and nonlinear normals are formed. They will

show an analogous sparsity pattern after iinearization.

The normals of field and measurements are added and solved by

Newtons met-od, This method requires precisely that linearization which

we were talking about above.

We shall conclude this outline of an intended research project

with the following

Remark: It is not considered that the use of three-dimensional gravity

measurements is very meaningful in the geodetic boundary value problem

unless additional information on horizontal position is available, Such

information comes either from ground control networks or from space

observations. Hence one should attempt to either incorporate this

information (without destroying the sparsity pattern) or to remove the

horizontal degrees of freedom in the unknown mapping from r, , space

to R, 0, A space.
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6. Computer experiments for 2-dimensional problems

6 I. Purpose and scope

The computer experiments to be described in this chapter were designed

to find an answer to the following specific questions.

1) Should the finite element- approach be based on the Ritz-, or the

Trefftz-, or on the least squares principle. As we have pointed out in

section 3.3.1. the least squares principle was found to perform best in

the presence of noisy and redundant data.

2) Are cubic polynomials sufficiently accurate, or should quintic poly-

nomiais be used? The question is perhaps posed in an overly simplified

way. One can always account for the lower degree of the cubics by

choosing a smaller element partition. Hence the question should be asked

as follows. Does it pay off to replace the choice of cubics and an

adequate element partition by the use of quih-tics and an element

partition having appropriately larger elements? Quintics look attractive

because they are C' continuous. One can even enforce Lhe Laplacean to

vanish at the nodes. Nevertheless it was found that the use of cubics is

preferable.

3) Can the aLtenuation-with-altitude-effect of the potential be

exploited in a way that the size of the elements increases with altitude

fast enough to ensure that the total number of nodes is bounded by a

constant times the number of nodes at the surface. The answer is

affirmative.

4) What is the best way to represent the field in the remote outer space

of the earth? It is believed that specially designed elements of

inifinite size together with appropriately chosen local shape functions
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(dIfferenL from cubic polynomials) are the best choice. Confer section

3.6.

5) What is the best ratio between weights applied to the field

contribution to the normals and those applied to the contribution from

the geodetic observations?

6) Is there a way to combine in one calculat ion surface data with

satellite derived spherical harmonics?

Due to the large CPU-times predicted for 3-dimensional calculations it

was decided to conduct the experiments in 2 dimensions. Stoke's probiem

for the unit circle was solved by means of finite elements, and for a

set of artificially generated data. Our version of Stoke's problem is

formulated as follows. Find a potential V(r,c?) in the outer space of the

unit circle such that

(4 • 0i -lo (6.1)

( ) L 0 r > 1 (6.2)

(3) V(r i 2V f(c9 ; r 1 (6.3)t r"

It is seen that we have eliminated the logarithmic part of the

potential. V may be viewed as a disturbing potential. The reference

potential U may absorb the logarithmic part. The function f(S) must be

free of 'circular harmonics' of the zero-th and first degree. (I.e. its

Fourier series must start with terms in cos 2S, sin 2y).

Remark: Obviously the stated problem is most easily solved by means of

circular harmonics, i.e. by Fourier-analysis. Representing f(C) as

f(CC) C n(c(c?+ n * sinnsp) (6.3a)
nfsZ.
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the solution is obtained as

V(y): T1 ( O.ncos n3 1 bnsin n?) (6.3b)
n.2.

with

an - bn n (6.3c)

n-I n-

The above continuous version (6.1-3) of Stoke's problem is replaced by a

discrete one. First, the continuous data f(T) are replaced by f(,) for

discrete arguments T, Secondly, the potential V(r,So) is replaced by a

finite element representation

. Lj S j(r.) (6.4)

Confer sections 3.2. and 3.3.1, in particular equation (3.19). The

element partition is shown in principle in figures 3.6(a)-(b) of section

3.3.2. In all experiments conducted thus far, the arguments y were

assumed equally spaced.

The outer zone was represented in two ways, namely by a 'circular

harmonics* representation of comparatively low degree (cf. section 3.7,

method labeled (4)), and alternatively by elements of infinite size as

outlined in section 3.6.

The data f( ) were generated from an "assumed potential' of the

form

VSS (r cf) FZ "n {cL, cos ng *b1.sin n }
22 (6.5)

af'- b,'"
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The coefficients oL,, (3 were randomly generated in the interval C-0.5,

+0.5]. The maximal degree N, and the damping exponent d were varied.

The choice d = I corresponds to Kaula's rule of the thumb. (Equal degree

variances of the radial derivative for a wide range 2 n < NMAX).

Remark: Note that no measurement noise was assumed to be superimposed

upon the data calculated from the assumed potential

The procedure described in chapter 3 and section 4.1 yielded the

potential at the nodes of the chosen element partition together with the

nodal derivatives. This 'calculated potential' was compared with the

assumed potential (6.5). Statistics of the deviations were calculated

and tabulated. The calculations were carried out on the OSU-Computer

Amdahl 470 V/6-II. In a few cases, a post-analysis of the OSU results

was done on a desk-top computer WANG 2200 VP. The potential was then

interpolated into the interior of the finite elements in order to verify

that the approximation was also good there. Also a few orbits of passive

masspoints were numerically integrated for the assumed potential and,

alternatively, for the calculated potential. In both cases a circular

symmetric reference potential of the log r type was superimposed.

6.2. Parameters distingujishing the experiments.

In this section we give a detailed description of the input parameters

characterizing one particular experiment.

IDEGR degree of polynomials in elements of finite size:

3 ... bicubic polynomials

5 ... biquintic polynomials
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ISWINF a switch distinguishing the represenitation of the field in

the remote outer zone r > rour

I ... circular harmonics

2 ... elements of infinite size

NLAYER number of successive layers of elements in the circular

ring I < r < rour

ITYPECI), I I, ..... NLAYER type of elements in layer number I

I ... simple quads

2 ... compound quads

NELEM(1) number of elements in layer number I (the lowermost)

layer

HFCT a factor governing the thickness of the various layers

and also responsible for the size of rour. Cf. the following

remark.

Remark: From the input parameters NLAYER, ITYPE(I). I = I, ... , NLAYER,

NELEM(I), HFCT the element partition was calculated by the following set

of formulas:

NELEM(I) = NELEM(I-I)/ITYPE(I-I); I = 2, ..., NLAYER (6.6)

DELPHI(I) = 2*r/NELEM(I); I = 1, ..., NLAYER (6.7)

RADIUSI) =I

RADIUSCI) = RADIUS(I-I)*(l + DELPHI(I)*HFCT)

I = 2, ... , NALYER+I (6.8)
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Thereby we have denoted

NELEM(I) number of elements in layer I

DELPHI(I) angular width of elements in layer I

RADIUS(I) inner radius of layer I

outer radius of layer I-I

I = 1 ..., NLAYER

RADIUS(NLAYER+I) = ror outer radius of last layer outer radius

of the circular ring partitiored into elements of finite

size.

4e now continue to describe the input parameters.

NPOTC largest degree of circular harmonics in assumed potential

(denoted NMAW in equation (6.5))

DAMP damping factor in the assumed potential (denoted d in

equation (6,5))

NPINST this parameter governs the number of locations at which

data (gravity anomalies) were calculated from the

assumed potential. Remember that the locations are equally

spaced. NPINST is the number of locaLions in an interval

of size DELPHI(I), i.e. in a boundary segment of a

lowermost finite element at r = 1. The data are

arranged there as shown in figure 6.I. It is seen that

the interval ends corresponding to element boundaries

are halfways situated between two measurements locations.



The total number of fictitious measurements is thus

obtained as NELEM(I)*NPINST. Recall that no simulated

measurement noise was superimposed upon the data.

,P
Figure 6.1. Arrangement of fictitious measurements in

a boundary segment of the unit sphere

STKWGT weight applied to the contribution of the measurements

to the normals. (The weight for the field contribution

was assumed with a value equal to i).

The following 4 parameters apply only to the case ISWINF = I, i.e. to

the representation of the field in r > r,. by circular harmonics.

NHARM highest degree of circular harmonics in the representation

of the field in the outer zone. This representation

is thus given by

NHAR

Z - A cos ny Bnsin nyJ (6,9)

Li
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The calculated va'ues for the unknowns A, B, should

approximate those of an, b, in the representation (6.5)

of the assumed potential. The deviations are due to

(1) discretizat ion of data

(2) discretization of the field by the finite element

representat ion

(3) NHARM 4 NPOTC

(4) roundoff error

NPINHA this parameter governs the number of locations at which

the finite element representation of the field in the

ring was collocated with the circular harmonics

representation of equation (6.9) in the outer zone. The

locations are all found at r = ror. They are equally

spaced. There are NELEM(NLAYER) intervals at r = r,

NPINHA gives the number of locations in one of these

intervals. Their distribution is similar as that shown in

figure 6.1, i.e. the locations ore equally spaced and

the interval boundaries were assumed halfways between

the two adjacent locations. The total number of

points of collocation is thus NELEM(NLAYER)*NPINHA. This

number was frequently assumed appreciably larger than

2*NHARM - 2, the number of coefficients in (6.9). This

means that we are working with a redundant set of

locations at which consictency of the two potentials

was enforced. Hence remark 3 given in section 3.7 applies

mutatis mutandis (i.e. translated to the method labeled

(4) in section 3.7). Consistency can only be required

in a least squares sense. Weight assumptions were

necessary. They are specified by the subsequent 2

weight parameters.
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HARWGO weight applied to the values of the potential during

collocation at the locations on the circle r = rour

HARGI weight applied to the radial derivative of the potential

during collocation..

Remark: Recall Lhat the weight applied to the field contribution was

assumed equal to I.

r

The following 3 parameters apply only to the case of IDEGR 5, i.e. to

the case of biquintics.

NS This parameter allows to choose between 8

parameters per node and 9 parameters per node. In

case of 8 parameters per node, the Laplacean is

fixed to zero at any node. This gives a linear

relation between the nodal parameters V,r, Vr, Vs

which was used in order to eliminate Vrr.

FLPWGL Because it was observed that the nodal parameters

involving second radial derivatives were rather

poorly determined at r = 1, additional fictitious

observations of the Laplacean were assumed at all

measurement locations. The appropriate weight was FLPWGL.

FLPWGU This input parameter is analogous to the previous

one, however it applies to r =r.r.
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6.3. Detailed results for two experiments.

6.3.1. An experiment using comparatively large elements.

The input parameters were specified as follows

IDEGR 3 [cubics]

ISWINF = 2 [circular harmonics in outer zone]

NLAYER = 4 [number of layers]

ITYPECI) = I [simple quads at first layer]

ITYPE(2) = I [simple quads at second layer]

ITYPE(3) = 2 [compound quads at third layer]

ITYPE(4) = 2 [compound quads at fourth layer]

NELEM(1) = 32 [number of elements in first layer]

HFCT I [approximately square shaped elements]

NPOTC = 128 [highest degree in assumed potential]

DAMP = 2 [damping factor in assumed potential]

NPINST = 8 [8 data points per interval at r = 1]

STKWGT = 5 [weight for data]

NHARM 8 [highest degree of circular harmonics in the

representation of the field in the outer zone]

NPINHA = 8 [8 collocation points per interval at

r = ro]

HARWG = 50 [weight in collocating V at r r,,.]

HARWGI = 5 [weigth in collocating Vr at r = .]

Table 6.1 illustrates the geometry of the element partition. A pictorial

representation is given by our earlier figures 3.6(a), (b) in section

3.3.2.
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LAYER ITYPE NELEM RADIUS DELPHI
1 32 1.00000 0.19635

2 1 32 1.19635 0.19635
3 2 16 1.43125 0.39270
4 2 8 1.99330 0.78540

r.r=3.55884

Table 6.1. Element partition in experiment

with comparatively large elements

The assumed potential (equation (6.5)) is depicted at ground level

(r 1 ) in figure 6.2(a). It is seen that the potential does not exceed

the value 0.14. Recall that the assumed potential was used to generate

the discrete set of gravity anomalies. From these data the potential was

calculated backwards by the finite element method. The calculated

potential at r =I is shown in figure 6.2(b). It is seen that the

irregularities are somewhat smoothed out. Figure 6.2(c) shows the

difference. Note that the ordinates are now scaled differently. We see

that the relative error is about 2.5%.

The figure 6.3(a)-(c) describe in a similar way the behaviour of

the radial derivative Vr at r = 1. Figures 6 .4(a)-(c) are devoted to the

horizontal derivative Vy at r = 1.
It is obvious that the accuracy in the presently described

experiment is insufficient. In order Lo obtain an approximat ion of the

geoid at the cm level, the finite element calculation should reproduce

about 4 correct digits of the disturbing potential V. Presently only 2

digits are correct. We have nevertheless exhibited the results in some

detail because they tell us very instructively what we can expect

qualitatively from a finite element solution. If the elements are chosen

too large, the details of the field can not be properly represented. On~e

should nevertheless expect that the approximation is good in the low
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frequencies. This is apparently the case and is further illustrated by

figures 6.2(d-e), 6.3(d-e), 6.5 and 6.6.

Figure 6.2(d) shows the assumed field V at r = 1, truncated to

circular harmonics of degree n < 32. This low-frequent part of the field

has about the same number of parameters as the trace of the finite

element representation of V at r = 1. The two graphs 6.2(b) and 6.2(d)

are visually nearly indistinguishable. Figure 6.2(e) shows the high

frequent part of the assumed field, composed of circular harmonics of

degree 32 < n < 128. The two graphs of figures 6.2(c) and 6.2(e) are

a6fferent, but the magnitude is the same. Figures 6.3(d-e), which should

be compared to figures 6.3(b-c) suggest that the same conclusion holds

for the radial derivative: the finite element solution is about as good

as the assumed field truncated to low-degree harmonics of degree n ( 32.

Figure 6.5 shows the superposition of figures 6 .3(a) and 6.3(b).

Figure 6.6 shows the calculated Laplacean AV at r = 1. (The assumed

Laplacean is zero, of course). The calculated Laplacean is discontinuous

at element boundaries. Hermite bicubics are only C' continuous. The

graph of AV suggests that the finite element solution achieves a

smoothing by shifting - in a balanced way - positive and negative masses

outward of the earths body. The method automatically regularizes the

field in this way. The shifting of masses should not be noticable at the

low frequencies.
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Figure 6.2(c). Assumed polential V at r = I in

experimen using comparatively large elements.
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Figure 6.2(b). Calculated potential V at r =I in

experiment using comparatively large elements.
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Figure 6.2(c). Difference calculated minus assumed

potential V at r = I in experiment using comparatively

large elements.
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Figure 6.2(d). The assumed field V at r I truncated to

circular harmonics of degree n < 32. Experiment using

comparatively large elements.
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Figure 6.2(e). Contribution of circular harmonics of

degree ni > 32 to the assumed field V at r 1 . Experiment

using comparatively large eiemenLs.
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Figure 6.3(a). Assumed radial derivative Vr at r =I

in experiment using comparatively large elements.
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Figure 6.3(b). Calculated radial derivative Vr at r =I in

experiment using comparatively large elements.
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Figure 6.3(c). Difference calculated minus assumed

radial derivative Vr at r = I in experiment using

comparatively large elements.
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Figure 6.3(d). Radial derivative Vr of the assumed field

at r = I, truncated to circular harmonics of' degree n 4 32.

Experiment using comparatively large elements.
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Figure 6.3 (e). Contribution of circular harmonics of4degree n > 32 to the radial derivative Vr of the assumed

field at r = 1. Experiment using comparatively large

elements.
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Figure 6.4(o). Assumed horizontal derivative Vy at r=

in experiment using comparatively large elements.
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Figure 6.4(b). Calculated horizontal derivative VI, at

r I in experiment using comparatively large elements.
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Figure 6.4(c). Difference calculated minus assumed

horizontal derivative V? at r I in experiment using

comparatively large elements.
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Figure 6.5. Superposition of assumed and calculated radial

derivative V1. at r =I in experiment using comparatively

large elements.
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Figure 6.6. Calculated Loplacean LW at r I in

experimnent using comparatively large elements.
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In order to put the potential derived from finite elements to a further

test, a number of orbits of passive mass-points was numerically

integrated. A reference potential equal to

U(r) - Log -7 (6.10)

was assumed. If VAss(r,p) and VCLjr,y) denote the assumed and calculated

potential discussed previously, then the total potential used in the

orbit calculations was either

WASS Ur(c) LIUr) + co~s(n ) (6.lla)

or

WCLC(rc?) ' 1(r) + c.V,,, (r.y) c6.lb)

By choosing

Co a .0003

an attempt was made to relate the reference potential and the disturbing

potential in a way quantitatively similar to the real earth.

The equation of motion in polar coordinates is

""0 r
+ . r aw

rq
4 31 '(6.12)

For near circular orbits one may represent r and p in the following way:

r, r. + Ar
(6.13)
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Thereby the two constants ro, 4'o fulfill

r. 0  (6.14)

One proceeds to linearize the equation (6 12) obtaining:

(6. r)4.2Lr C0(gL + *o r(r+L.

noc (r0.. (rY

We shall refer to (6.12) as the equation of the 'exact orbit" whereas

(6.15) ore the equations of the 'differential orbit".

Either version of the orbital equations was integrated by a high

degree Runge-Kutta-type formula found in Henrici (1962), p. 171. When

the calculated potential was used, and when the orbit crossed an element

boundary, the step size was temporarily decreased by a factor of 1/4.
Figure 6.7(a) shows the results of an exact orbit calculation. The

orbit posses through all 4 layers of the circular ring subdivided into

elements of finite size. (Cf. figure 3.6(b)). The radial and angular

deviations between the two solutions based on W, and WASSare shown in
figure 6.7(b). The deviation amounts to about I pp 300,000 This

corresponds to a 20m-accuracy in the real world.

Figures 6.8(a)-(b) show in a similar way the results for a

differential orbit with respect to r0 = 1.1,4. = 0.90909... It is a low

orbit which posses about midways through the lowermost layer. We see

that the accuracy is about I pp 1,500,000 or 4-5 m.

Remark: The deviations due to differing V, ans VA, of the orbits (exact

as well as differential) are nearly linear in c. over a fairly wide

range. Hence the assumption co = 0.0003 can be changed by rescaling

figures 6.7(b) and 6.8(b) appropriately.

_ I
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t 13 sec

t=0 sec

t 0sec

Figure 6.7(a). Exact orbit from experiment using

comparatively large elements. Initial values are

r(O) = 1.01, ?(O) = 0, S() = 0, (O) = 1.55.

A step size of AL = 0.05 seconds was used for the

calculated potential and 6t = 0.0125 for the assumed

potential. A value c. 0.0003 was chosen. (Cf.

equations (6.11)).

Mr-
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Figure 6.7(b). Difference in r (Lop) and y (bottom)

from calculated and assumed potential. Experiment

using comparatively large elements.
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-.08004
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t =7 sec
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-. 9907

~-. 99088
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Figure 6 .8(a). Radial increment 6r (..) and angular increment L50

(bottom) obtained by integrating a differential orbit based on the

assumed potential. Initial values: r(O) = 1.1, K(O) = 0, 9() = 0,

(0) = 0.90909... A step size of 0.05 sec was used for the calculated

potential, and At = L.0 125 for the assumed potential. A value c. =

0.0003 was chosen.
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r t =7 sec

Figure 6.8(b). Difference in 6r (top) cnd 69, (bottom)

of differential orbits based on calculated and assumed

potential. Experiment using comparatively large elements.
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Remark: Note that orbits in a central force field implied by (6.10) are

not closed. In case of the differential orbit, the angle between

successive pericenters (successive apocenLers) is given by (cf. Arnold

(1978), p. 37, problem 2)

ir (6.16)

Translated into time this gives

. 9 sec (6.17)

This is in agreement with figure 6 .8(a).

We summarize some further results of this experiment in tables 6.2

and 6.3. Table 6.2 lists the magnitude of the nodal parameters and the

magnitude of the deviations between calculated and assumed field.

Maximal and rms quantities are listed per level. There are 7 levels of

nodes. A layer of simple quads is bounded by two levels. A layer of

compound quads has one additional level of nodes halfways between the

two bounding levels. Level I corresponds to r I, level 7 to

r = r r 3.55884 ....

__________ !
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Level V V V91

max rms max rms max rms

0.126944 0.066857 0.5029&1 0.198303 0.365901 0.201368

0.002493 0.001005 0.098707 0.043960 0.092146 0.039320

2 0.078590 0.041004 0.178782 0.093193 0.212148 0.113458

0.000258 0.000128 0.005493 0.002216 0.014307 0.005119

3 0.049725 0.025910 0.08696 0.046367 0.130977 0.067720

0.000136 0.000055 0.000715 0.000291 0.002135 0.000799

4 0.031793 0.016990 0.045800 0.024350 0.075744 0.043491

0.000084 0.000034 0.000101 0.000054 0.000380 0.000221

5 0.021928 0.011866 0.026655 0.014127 0.050927 0.029458

0.000093 0.000033 0.000075 0.000038 e.000256 0.000126

6 0.009972 0.005744 0.008395 0.004658 0.020399 0.014113

0.000045 0.000026 0.000037 0.000024 0.000612 0.000418

7 0.005620 0.003345 0.003601 0.002040 0.011373 0.007977
0.000016 0.000010 0.000040 0.000022 0.000126 0.000090

Table 6.2

Maximal and rms values for assumed nodal parameters

(top entry in each field) and for deviations from

calculated values (bottom entries) at various levels

of nodes. Experiment using comparatively large elements.
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Table 6.3 compares some of the assumed potential coefficients an, bn;

n 2, ..., NHARM 8 with Am, B, obtained by the collocation procedure

at r row,

SA, B,

n a, bn

Diff. Diff.

-0.016589 0.051241

2 -0.016752 0.051S70

0.000163 -0.000329

-0.054197 0.041178

3 -0.055401 0.042326

0.001204 -0.001148

-0.000030 0.015842

4 0.0663t3 0.019369

-0.000343 -0.003527

(the remaining coefficients are not listed

because the errors are comparable in size

to the coefficients themselves)

Table 6.3

Comparison of assumed (top entries) and calculated
(middle entries) harmonic coefficients. Experiment

with comparatively large elements.
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6.3.2. An experiment usinQ comparatively small elements.

The input parameters were specified as follows

IDEGR = 3 [same as before]

ISWINF = 2 [same as before]

NLAYER = 4 [same as before]

ITYPE(I) = I [same as before]

ITYPE(2) = 1 [same as before]

ITYPE(3) = 2 [same as before]

ITYPE(4) = 2 [same as before]

NELEM(I) = 128 [increased by a factor of 4]

HFCT 1 [same as before]

NPOTC : 64 [decreased by factor 1/2]

DAMP I I [less damping than before]

NPINST = 8 [same as before]

STKWGT = 5 [same as before]

NHARM : 32 [increased by a factor of 4]

NPINHA 8 [same as before]

HARWGO 50 [same as before]! HARWGI S [same as before]

Table 6.4 and figure 6.9 illustrate the geometry of the element

partition. Note that r,. results in a smaller value than before.

t



- 166 -

LAYER ITYPE NELEM RADIUS DELPHI

1 1 128 1.00080 0.04909

2 1 128 1.04909 0.84909

3 2 64 1.10058 0.09817

4 2 32 1.28863 0.19635

, 1.44595

Table 6.4. Element partition in experiment using

comparatively small elements.

We now exhibit without much text the counterparts of figures 6.2-6.4,

6.7-6.8 and tables 6.2 and 6.3. These are the figures 6.10-6.14 and the

tables 6.5-6.6.

.11

Figure 6.9. Element partition for experiment

using comparatively small elements.

4.I~
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Figure 6.10. Assumed po.en8ia{ V (Lco) of r I in experiment using

comparatively small elements. The calculated V is graphicalliy
indistinguishable. The bottom figure shows the enlarged diference

coalculated minus assumed V.indstngishbl. he otomfiureshwstheenared ifernc
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Figure 6.11. Assumed radial derivaLive Vr (Lop) at r I in experiment

using comparatively small elements. The calculated V, is graphically

nearly indist;nguishable The bottom figure shows the enlarged

difference calculated minus assumed V, at r = 1.

a., t
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Figure 6.12. Assumed angular derivative VT (Lop) at r I

in experiment using comparatively small elements. The

calculated V, is not shown. The bottom figure shows the

enlarged difference calculated minus assumed V? at r = 1.
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Figure 6.13(a). Exact orbit in experiment using

comparatively small elements. Initial values are

r(O) = 1.01, (O) =0, T(O) =0, (O) =1.15.

A step size of 0.0125 sec was used. A value

c= 0.00003 was chosen. (Cf. equations (6.11)).
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Figure 6.14(a). Radial increment E r (op) and angular

increment 6y (bottom) obtained by integrating a

differential orbit based on the assumed potential. Initial

values were r(O) = I.1, i(O) = 0, S(0) = 0, (O) =

0.90909... A value c0 = 0.00003 was chosen. Experiment

using comparatively small elements.
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tz 7sec

t 7 sec

-. 00 aei

Figure 6.14(b). Difference in 6ar (top) and dy (bottom)

of differential orbits based on calculated and assumed

potential. Experiment using comparatively small elements.
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Note that the assumed potentials are different in the examples described

in the previous and in this subsection. In subsection 6.3.1. we had

NPOTC = 128 coefficients in the assumed potential and a damping factor

of DAMP = 2. in this subsection NPOTC = 64 and DAMP = 1. The gradients

of the present potential are about 10 times larger at r = I than in the

earlier example. For this reason, the constant c,, of equation (6.11) was

chosen by a factor of 1/10 smaller than before. However, o remark given

in section 6.3.1. carries over, implying that the figures 6.13(b) and

6.14(b) may be rescaled in proportion to any change of c..

Due to the differences in the assumed potentials the differences

in the results are not only due to the change of the element partition.

Hence the results are not immediately compared. In the next section a

number of experiments will be described summarily. From this additional

information it may be concluded, that the transition from NELEM(O = 32

to a value of 128 improves the results by about I digit at r = 1.

Figures 6.13 and 6.14 showing the results of the orbit

calculations demonstrate an accuracy of about 1 pp S5,000,000 in case of

the exact orbit. This corresponds to 1-2 m. The differential orbit is

good to I pp 300,000,000. This correspond to 2 cm.
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,Leve I V V, VT
meeIm rms max rms

1 0.560348 0.214973 5.990022 2.260387 6.250663 2.255706

0.002427 0 000882 0.046030 0.016975 0 328472 0.153894

2 0.384302 0.171249 2.389440 0.797211 2.324042 0.834182

0.000698 0.000250 0.053510 0.019825 0.011507 0.004792

3 0.297927 0.143964 1 .330956 0.502973 1.334445 0.553725

0.000094 0.000026 0.004152 0.001534 0.005652 0.001970

4 0.243919 0.123493 0.853614 0.368318 0.912405 0.427124

0.000053 0.000023 0.001245 0.000492 0.005634 0.001950

5 0.209708 0.107151 0.606866 0.286809 0.696430 0 348634

0.000044 0.000019 0.000588 0.000227 0.001248 0.000473

6 0.156166 0.082076 0.348728 0.184487 0.458199 0.248361

0.000091 0.000046 0.000463 0.000222 0.003435 0.001451

7 0.122152 0.064510 0.240170 0.127450 0.340255 0.187136

0.000058 0.000031 0.000102 0.000052 0.000789 0.000376

Table 6.5

Maximal and rms values for assumed nodal parameters

(top entry in each field) and for deviations from

calculated values (bottom entries) at various levels

of nodes. Experiment using comparatively small elements.

1.~
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SA, B, A, B
n 0 b, on b,

Diff. Diff. Diff. Diff.

-0,033504 0.103139 -0.005873 -0.026646
2 -0 033505 0 103140 13 -0 006296 -0 027436

0.000001 -0.000001 0.000423 0.000790

-0.166199 0.126972 0 009536 0.027354
3 -0.166203 0.126977 14 0.010171 0.027769

0.000004 -0.000005 -0.000635 -0.000414

0.001247 0.077468 -0 001018 0.025260
4 0.001250 0.077477 IS -0.000838 0.025864

-0.000003 -0.000009 -0.000180 -0.000604

-0,035952 -0.058543 -0.013724 -0.010341
5 -0,035958 -0.058558 16 -0 013725 -0 011124

0.000006 0.000015 0.000001 0.000783

0.023489 0.072583 -0.007358 -0.008160
6 0.023507 0.072625 17 -0.007605 -0.007283

-0.000017 -0.000042 0.000247 -0 000877

-0.025322 -0.013856 -0.019404 -0.015308
7 -0.025337 -0 013859 18 -0.020553 -0.014436

0.000015 0.000003 0.001149 0.000872

0.031356 -0.051497 0.022968 -0.018957
8 0.031431 -0.051597 19 0.023800 -0.020617

-0.000075 0.000100 -0.000832 0.001660
0.052027 -0.032417 -0.012259 -0.015923

9 0.052222 -0.032523 20 -0.012340 -0.016005

-0.00019S 0.000106 0.000081 0.000082

0.003373 0.017371 -0.001372 0.007838
10 0.003460 0.017520 21 -0.001379 0.007600

-0.000087 -0.000149 0.000006 0.080238

0.012190 0.018735. -0.020856 0.013256
II 0.012312 0.018955 22 -0.019737 0.011703

-0.000122 -0.000220 -0.001119 0.001553

0.000715 -0.001960 -0.004177 0.005744
12 0.000830 -0.002129 23 0.000844 0.008234

-0.000016 0.000169 -0.005021 -0.002490

Table 6.6
Comparison of assumed (Lop entries) and calculated
(middle entries) harmonic coefficients. Experiment
using comparatively small elements.

.4i
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5.4. Summary of other experiments.

6.4.1. Experiments using bicubics

Table 6.7 lists input parameters and resulting accuracies for a number

of experiments using bicubics.

Experiment 1 2 3 4 5 6 7 8 9

ISWINF 1 1 1 2 I 2 1 1 1

NLAYER 4 4 4 4 4 4 5 4 4

ITYPE(1) I I I I I I I I I

ITYPE(2) I I I I I I I I I

ITYPE(3) 2 2 2 2 2 2 2 2 2

ITYPE(4) 2 2 2 2 2 2 2 2 2

ITYPE(S) / / / / / / 2 / /

NELEM(I) 32 32 32 32 32 64 64 128 t28

HFCT I 1 I I I I 0.75 I I

rur 3.56 3.56 3.56 3.56 3.56 2.01 2.72 1.45 1.45

NPOTC 16 32 128 128 128 32 64. 64 128

DAMP 1 1 2 2 1 1 1 1 1

NPINST 8 8 8 8 8 8 8 8 8

STKWGT 5 5 5 5 5 25 5 5 5

NHARM 8 8 8 / 8 / 8 32 32

NPINHA 8 8 8 / 8 / 8 8 8

HARWGO 50 50 50 I 50 / 50 50 so

HARWGI is is5 / 5 / 5 5 5

(table continued on next page)

A1
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Experiment 1 2 3 4 5 6 7 8 9

2 IE-3 2E-3 3E-4 / 2E-3 / 8E-4 IE-6 IE-5
A, B 3 4E-3 SE-3 I E-3 / 6E-3 / 2E-3 5E-6 6E-6

4 1 [-2 2E-2 4E-3 / 2E-2 / 1 E-2 9E-6 8E-6

I 1 [-3 2E-2 I E-3 I E-3 4E-2 i E-3 I E-2 9E-4 7E-3
2 SE-A 3E-3 i [-4 I [-4 3E-3 4E-4 8E-4 2E-4 I E-3
3 iE-4 iE-3 5E-S 6E-S IE-3 5E-5 5E-4 2E-5 3E-4
4 8E-5 7E-4 3E-5 4E-5 7E-4 4E-5 4E-4 2E-5 IE-4

V S 9E-5 SE-4 3E-5 4E-5 5E-4 4E-5 3E-4 2E-5 5E-5
6 SE-S 4E-4 2E-5 IE-S 4E-4 7E-5 2E-4 SE-S SE-S
7 9E-6 2E-4 9E-6 I E-S 3E-4 7E-5 2E-4 3E-5 3E-5

8 / / / 2E-4 / /
9 / / / 9E-5

1 7E-3 SE-i 4E-2 4E-2 3 1E-2 7E-1 2E-2 I
2 8E-3 5E-2 2E-3 2E-3 5E-2 IE-2 2E-2 2E-2 IE-1
3 6E-4 6E-3 3E-4 3E-4 7E-3 I E-3 5E-3 2E-3 i E-2
4 2E-4 I E-3 SE-S SE-S I [-3 3E-4 2E-3 SE-A 2E-3

Vr S I E-4 SE4 4E-5 4E-5 5E-4 2E-4 I E-3 2E-4 7E-4
6 6E-5 2E-4 2E-5 3E-5 3E-4 9E-S 7E-4 2E-4 2E-4
7 SE-S 2E-4 2E-5 I E-5 2E-4 2E-4 SE-A 5E-S 7E-5
8 / 3E-4 / /
9 / 2E-4

.1I 6E-2 8E-I 4E-2 4E-2 2 IE-1 9E-1 2E-1 I
2 9E-4 IE-I 5E-3 5E-3 2E-I 3E-3 6E-2 SE-3 2E-1.13 2E-3 2E-2 8E-4 8E-4 2E-2 2E-3 IE-2 2E-3 2E-3
4 I E-3 2E-3 2E-4 2E-4 3E-3 I [-3 6E-3 2E-3 3E-3

V, S SE-A 1 E-3 I E-4 I E-4 1 E-3 3E-4 2E-3 SE-A 8E-4
6 IE-3 1E-3 4E-4 31E-4 2E-3 IE-3 3E-3 2E-3 2E-3
7 3E-4 6E-4 8E-5 2E-4 7E-4 3E-4 6E-4 4E-4 4E-4
8 / 2E-3 / /
9 / / 9E-4

Table 6.7
Summary of experiments using bicubics. Experiment
No. 3 and No. 8 are those discussed in detail in
sections 6.3.1. and 6.3.2.
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6.4.2. Experiments using biquintics.

Table 6.8 lists input parameters and resulting accuracies for a number

cf experiments using biquintics. The parameters NLAYER (=4), ITYPECI)

(=1), ITYPE(2) (=t), ITYPE(3) (=2), ITYPE(4) (=2) are not repeatedly

listed because the indicated values were the same for all experiments

documented in this table.

Experiment I 2 3 4 5

NELEM(I) 32 32 32 32 32

HFCT I 0.75 0.75 I I

rvr 3.56 2.71 2.71 3.56 3.56

NPOTC 32 128 128 128 128

DAMP I 2 1 1 1

NPINST 8 16 16 16 8

STKWGT I I I I I

NHARM 8 8 8 8 8

NPINHA 8 8 8 8 8

HARWGO 10 10 10 10 to

HARWGI 2.5 2.5 2.5 2.5 2.5

N89 9 9 9 9 8

FLPWGL IE-3 IE-3 IE-3 IE-3 IE-3

FLPWGU 3E-3 IE-4 IE-4 IE-4 IE-4

(table continued on next page)
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Experiment 1 2 3 4 S

2 1E-3 1E-5 4E-4 SE-4 3E-2

A, 8 3 2E-4 4E-6 2E-4 3E-4 2E-3

4 3E-4 3E-S 4E-4 6E-4 5E-3

1 2E-3 4E-4 3E-2 3E-2 3E-2

2 2E-3 7E-6 2E-4 SE-4 2E-3

3 IE-3 7E-6 2E-4 3E-4 IE-3

V 4 9E-4 SE-6 2E-4 2E-4 7E-4

5 6E-4 4E-6 IE-4 IE-4 SE-4

6 2E-4 2E-6 6E-5 5E-S 2E-4

7 9E-5 IE-6 4E-S 3E-S 2E-3

1 IE-2 3E-2 2 2 2

2 9E-3 3E-4 IE-2 3E-2 2E-2

3 3E-3 4E-5 2E-3 5E-3 6E-3

Vr 4 IE-3 8E-6 3E-4 2E-4 9E-4

S 9E-4 6E-6 2E-4 2E-4 6E-4

6 3E-4 6E-6 8E-5 6E-5 2E-4

7 6E-5 2E-6 3E-5 6E-S iE-4

1 4E-2 3E-2 2 2 2

2 IE-3 IE-4 4E-3 7E-3 9E-3

3 2E-3 2E-5 9E-4 IE-3 2E-3

Vv 4 IE-3 5E-5 5E-4 3E-4 1E-3

5 8E-4 2E-S 3E-4 2E-4 9E-4

6 3E-4 6E-5 2E-4 IE-4 4E-4

7 2E-4 2E-S IE-4 2E-5 3E-3

Table 6.8. Summary of experiments using biquintics.

Additional input parameters were NLAYER = 4,

ITYPECI) = I, ITYPE(2) = 1, ITYPE(3) = 2, ITYPEC4) = 2.
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6.4.3. Discussion.

It is interesting to compare experiments based on the some assumed

field, e.g. the bicubic-experiments 5 and 9. (The field at r = i is

shown in figures 6.10-6.12. Also table 6.5 applies to this field). It is

seen that the transition from 32 elements in the lowermost layer to 128

elements results in an increase of accuracy by one digit. On the other

hand, experiments 8 and 9 differ only with respect to NPOTC. One

recognizes that experiment 9 looses accuracy in the lower layers due to

a rougher field there. However the accuracy in the upper layers is about

the some. This confirms our reasoning that the finite element solution

regularizes the field without affecting the lower frequencies. A

comparison of experiments 3 and 4 shows that the representation of the

field in the outer zone by spherical harmonics is about equivalent to

representation by elements extending to infinity. However it must be

borne in mind that the computational effort is less in the case of

elements extending to infinity.

Experiment No. S using bicubics and experiment No. 4 using

biquintics are otherwise based mostly on equal parameters. A comparison

shows that the improvement coming from biquintics is marginal.

Experiments No. 4 and No. 5 of the biquintics-table show that

fixing the Laplacean at zero gave worse results. It is particularly

interesting how poorly the harmonic coefficients were recovered in

experiment 5. In all experiments using biquintics the recoverage of the

harmonic coefficients was inferior to that in the experiments using

bicubics. The reason is not yet completely clarified.
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6.4.4. A word on the Comp~uter programs.

The programs for the Amdahl 470 V/6-II were written in an extended

FORTRAN. They comprised about 6000 statements. Double precision was used

throughout. Coding, testing and processing required about 6 weeks. No

attempt was mode to optimize speed by using assembly code in the inner

loop of the equation solver. The CPU time for the largest experiment was

83 seconds. It required the solution of a linear system with 2368

unknowns. Recherches show that about half of the time was spent on

evaluating the assumed potential and its derivatives for comparison

purposes. The time spent on the solution of the linear system must have

been less than 40 seconds. A full system of this size would have

required a CPU of more than 74 minutes. Hence a factor of about 1/100

has been gained by the nested dissection method.

The programs for the post-analysis on the WANG 2200 VP-desk-top

computer were written in an extended BASIC, called WANG BASIC-2. About

500k bytes of code were assembled requiring an effort of about 3 weeks.

Doing the post-analysis on a large computer would have required a time

span of probably 3 months. Sinall desk top computers have powerful

editing facilities, they offer instant response during editing, and

instant diagnosis during testing. It is a nonsense to solve small

problems on large computers.

6.4.5. Further desirable experi,,,ieris.

Time pressure did not allow to conduct all experiments the author had

originally in mind. It was intended to generate 'assumed potentials'

other than those defined by circular harmonics. For example it would be

interesting to see how the method performs for a potential generated by
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buried dipoles. Also ootentials with other types of near singularities

could be tried Another test could have been devoted to irregularly

distributed measurement locations, to noisy data, and to less regular

element partitions. Comparisons with the results of other methods

applied to the same 2-dimensional problem are missing. Finally, tests in

3 dimensions should be performed. Unfortunately there is a limit to the

amount of work a single person can do in a year, in addition to teaching

and administrating. It is intended to continue the experiments with the

help of my coworkers and students and to give a more complete report at

a later occasion.
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7 A proposed hybrid method.

7.1. Revision of the surface layer method.

There is an obvious way to introduce finite elements to the surface

layer method, namely to represent the surface layer density in terms of

2-dimensional finite elemenLs. Bilinear functions defined over

rectangles in the 9,% plane would ensure a continuous surface layer

density. Bicubics would give a C1 function. No improvement in

computational efficiency can be expected from such a procedure. The

normal equations would still be fully occupied. The number of parameters

per node increases from one to four. Hence block areas can be chosen 4

times as large as in the case of constant densities within blocks. The

benefit would be a field having continuous derivatives down to the

surface of computation.

7.2. Multipole layer.

Keeping in mind that the potential V to be represented is actually a

disturbing potential, and that frequently the reference potential U is

chosen in a way that V is free of harmonics up to a certain degree N-I,

it is 6empting to try a surface layer density such that the generated

potential is free of harmonics up to degree N-1. Such densities are

available, though not in the form of a single layer. Layers of

multipoles must be chosen. The p,Aential generated by a dipole is

2F cos (7.1)

Here . denotes the strength of the dipole. The meaning of V and I is

...........-.......-.- P
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seen from figure 7.1
point at which
V s evaluated

Figure 7.1. Explains the notation of

quantities related to a dipole

It is useful to remember that the potential of a dipole is obtained from

that one of a mass point by taking the directional derivative with

respect to the axis of the dipole and at the location of it.

cos v L (7.2)
2 Bv

It follows that the potential of a dipole decreases like 0-y} as r-w.

Hence it is free of zero and first order harmonics. A dipole layer is

obtained by locating dipoles at a surface and letting the strength of

the dipole be a function of location. The axis may also vary with

location. Physically and mathematically most meaningful is the

coincidence of the axis with the surface normal. The potential of a

dipole layer is also 0(-).

Dipoles may be generalized to multipoles. Multipoles were already

studied by Gauss and Maxwell. An N+1 pole of unit strength is obtained

as

B (7.3)
V! 1 v2  VN

Confer e.g. Lense (1954), p. 80 ff. Trying most simple things first, one

puts v1=V 2= . 'VN=v, thus letting the N axes coincide and obtaining

.11
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N N (7.4)

The generated potential is O(Ti--}, i.e. it is free of spherical

harmonics up to and including degree N-1. The same holds for the

potential of a mulLipole layer. The axes may be chosen in coincidence

with the surface normal.

What is the advantage of taking a mulLipole layer instead of a

single layer? At a first glance it appears that mullipole layer also

generates a full normal equation matrix. Mind, however, that the kernel

of a mulLipole of order N+1 decreases as O(--T) as r-Of. This implies

that even for moderately large N the contribution of the multipoles

located at a small surface element decreases rapidly as one moves away

from that surfoe element. If the surface on which the mulLipole layer

is assumed is subdivided into finite elements, and if the strength

function is represented in terms of nodal parameters, then the nodal

parameters of elements at a larger distance will be coupled only by very

small coefficients which may be replaced by zeroes. Hence a sparse

system of normal equations will be obtained.

What are the difficulties to be expected in implementing the

multipole layer method, and what is an appropriate finite element

representation of the strength function? How smooth should it be chosen?

In order to give a (preliminary) answer to these questions we shall take

a closer look at spherical multipole layers in the next subsection.

7.3. Multipole layers on the sphere.

Assume a sphere of radius R = I and let r > R = I. Starting from the

well known representation for the function

with t = R2 + - 2 R r cos (7.5)
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namely,

1 r > R (7.6)
n=

differentiating N Limes with respect to R and putting afterwards R =,

one gets

N 1 (7.7)

ii" 1 = [ P (cos V) n(n-). ..(n-N+1) (77
BRn N n r

Here Pn(t) are the familiar Legendre polynomials, normalized in a way

that Pn(l) = I. The series (7.7) converges for r > 1. Letting r--I, we

obtain in the ljmit a sequence which converges distribuLionally. The

potential generated by the multipole layer with strength function p is

V(r ) f " , R=l g(r) dF(q)
fr BR N R=1R (7.8)

.1 r>R=1

Here , J are unit vectors, P is the surface of the unit sphere. We

temporarily fix r and view V(r ) as a function of only. Then (7.8)

represents an isotropic operator. According to the theory outlined in

Meissl (1971), chapter 3, we know that its eigenfunctions are the

spherical harmonics Hnm. We can calculate the eigenvalues by the

Funk-Hecke formula obtaining

=0 n(<N

= 2n+l ;n > N =0 (7.9)

%2n+ n(n-l). ..(n-N+i) nrl n N > 0
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Hence if is represented as

= Hnm( ) (7.10)
n=O m=-n

where we now take the surface-spherical harmonics Hm(j) as fully

normalized, i.e.

q: L f H2 (7) dF( 1 ) = 1 (7.11)

we get the representation for V(r ) as

+n H ((.nm (.2

V(r ) = I- 1 nm %I
n=N m=_n r

We see that V(r ) = 07-11,1} as announced earlier. Further we note that

the operator is singular. The coefficients nm for n < N do not

contribute to V(r ).

If we like to continue V(rZ) downward to r = R = I, we must impose

restrictions upon the n.' The following series must converge

Z U n Pnm )  < (7.13)

n=N m=-n

to ensure that V( ) is a member of Hr, the Hilbert space of squared

integrable functions defined on F. The operator transforming p( ) into

V( ) has eigenvalues

=42n l n(n-1) ... (n-N+1) (7.14)

It amplifies the high frequences more than the lower ones. It may be

viewed as an operator from the Hilbert space H(
k N-l) into H(k); k;,.
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The space Hr comprises those functions

S +n

f I Cnm Hnm(p (7.15)
n=O m=-n

for which the following series converges

S +n t 2

1 (n c) < (
n=O m=-n am

In a least squares approach we like to have at r = I a potential(2 C(N+I)
V( ) e H.2 ) Hence g( ) e Hr appears appropriate. Therefore the

trial functions should be CN across element boundaries. In a Ritz-type

approach V( ) e H 1), (Z) e HrN ) and CN-1 continuity across element

boundaries would be sufficient.

Remark: One could avoid the smoothness requirements on (t) by the

Bjerhammar-sphere approach. A sphere of radius I-c is placed

concentrically into the unit sphere. The density F is assumed on this

sphere. We thus consider an operator

- V( ) (7.17)

whose eigenvalues are

47.

n =2n+' n(n-1) (718(n-N+I)(-)-

n N

However, in the present context we do not propose to shove difficulties

under the carpet by burying the mulLipole layer underneath the surface

of computation.

Suppose now, for the moment, that in (7.8) V(r ) is specified and

that p(j) is sought. If the equations are discretized in some way, we
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expect them to be very ill conditioned due to the differences in size of.

the eigenvalkies In, While the hiqh frequent components of F(j) appear to

be well determined, the low frequent components are not.

In physical geodesy we do not start from a known V(C). Instead we

have a discrete set of measurements corresponding to functionals of

V( ). The situation is more difficult but nevertheless similar. The

linear system leading Lo ( ) will be ill conditioned.

One may adopt the viewpoint that ill conditioning is equivalent to

an inproper problem formulation, and one may simply abandon the outlined

approach. On the other hand, if insight teaches one that the effects of

the ill-conditioning on the final result will be negligible, one may find

a way around the numerical difficulties. Of course, there is no hope

that insight can be replaced by calculus.

At the present time, no definite answer can be given. More time

is needed to think about the method and to conduct numerical

experiments.

• i
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Appendix A.

Computational effort associated with the partial reduction of a profiled

system of normal equations.

The material of this section is rather unsophisticated in nature.

However even trivial considerations may be cumbersome if their

verification is left to the reader. Therefore we quickly state some

formulas on the number of operations needed to solve a structured large

system of positive definite equations. A more systematic introduction to

this problem area is found in Meissl (1980 ), chapter 6.

We introduce the well known concept of the profile of a symmetric

matrix A = (a). It comprises all elements aj such that (1) i4 j, and

(2) there exists an element aj # 0, k i. Referring to figure A.1 we
introduce the profile function p(x) indicated by a heavy solid line. The

heavy line should actually be a step function because we have a discrete

number of equations. However we smear out the discontinuities. This is

legitimate if we deal with a large system.

%

_ 4%

X

Figure A.I. Partial reduction of a profiled symmetric

matrix. Definition of p(x), d(x).
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The portion below the main diagonal is not shown in figure A.I. Due to

symmetry, there is no need to store these coefficients in the computer.

The upper portion of the system comprises i equations. They are

called 'interior'. The equations below labeled j are called 'junction

equations". During partial reduction, the interior equations are

eliminated. One obtains a system of j partially reduced junction

equations.

If the matrix is split as

A A %, A% (A.1)

then the matrix of the partially reduced set is given by

A P )  A ' A  
(A.2)

A direct elimination procedure is used such as Gauss, Cholesky or one of

the variants. The partial triangular decomposition phase is by far most

time consuming. During this phase zero coefficients are enforced below

the main diagonal positions of he interior equations. Focus attention

on a row of coefficients whose diagonal position is implied by column x.

Call this the row x. Let y be a column to the right of x. From the

coefficient in row x and column y as many multiples of coefficients

located above it are subtracted as the following expression indicates:

x: y) - M in f Hwy ( p(-) - c()) 0), cue( p~y) - cv).o)) (A.3)

Thereby d(x) is the function implied by the heavy broken line in figure

A.l. Hence partial triangular decomposition requires

iZ.j '4.j

f d: y) cty (A.4)
0
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steps. One step comprises one multiplication and one addition. There

are also divisions and square roots (in case of Cholesky), but their

number is negligible. Also the number of operational steps involving

the right hand side, as well as the number of steps arising during the

later back-substitution phase are negligible.

Take a fully occupied system. We find

L L" Zj LEoj

, r L , 0 + (A.5)

0 x X

This formula is frequently used in chapter 4. For j = 0, i.e. full

reduction, we obtain

(A.6)

z,6
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